
Page 1

Common Calendar Binary Format
Common Calendar Timestamp System

Brooks Harris Version 3 2024-04-23 The author dedicates this work to the public domain

Table of Contents

1 Introduction .. 2
2 Scope .. 3
3 Normative References ... 3
4 Common Calendar Binary Format ... 4

4.1 CBF Components ... 4
4.1.1 Time - CBFTime_st ... 4

4.1.1.1 Rate enumeration - CBFRate_et ... 5
4.1.1.2 Counter Size enumeration - CBFCounterSize_et .. 5

4.1.2 Counter Size - CBFCounterHigh16_st, CBFCounterHigh32_st .. 6
4.1.3 24 Hour Period data structure - CBF24HourPeriod_st... 7
4.1.4 Local Date - CBFLocalDate_st .. 8

4.1.4.1 Time Zone Identity ... 9
4.1.4.2 Posix Abbreviated Name ... 10
4.1.4.3 Posix Abbreviation Name Change ... 10
4.1.4.4 Time-of-Day Count Mode - CBFTodCountMode_et .. 11
4.1.4.5 UTC Offset Shift - CBFUtcShift_st ... 11

4.1.5 Daylight Saving Time (DST) .. 12
4.1.5.1 Daylight Saving - CBFDstCountMode_et .. 12
4.1.5.2 Daylight Saving - CBFDstBias_st .. 12
4.1.5.3 Daylight Saving - CBFDstTransDay_st ... 12

4.2 Construction of CBF ... 13
4.2.1 As Time-point: ... 13

4.2.1.1 As UTC accurate local time-point timestamp : .. 13
4.2.1.2 As UTC accurate local date with time portion having no relation to the date: 13
4.2.1.3 As time-point timestamp < 86400 seconds:... 14
4.2.1.4 As time-point timestamp >= 86400 seconds: ... 14

4.2.2 As Time Interval... 14
4.2.2.1 As time interval < 86400 seconds: ... 14
4.2.2.2 As time interval >= 86400 seconds: .. 14

4.2.3 Assembly Order ... 14
4.3 Geostamp ... 15

4.3.1 Geographic Coordinates - CBFLocation_st .. 16
4.4 CBF RIFF Wrapper ... 16

Notation

“YMDhms” is shorthand for year-month-day hour:minute:second representation.

ISO 8601 representation is supplemented with suffixes (UTC) and (TAI), for example

1970-01-01 00:00:10 (TAI) = 1970-01-01T00:00:00 (UTC).

“UTC1970” is shorthand for 1970-01-01 00:00:10 (TAI) = 1970-01-01T00:00:00 (UTC).

Page 2

1 Introduction

Common Calendar Binary Format (CBF) provides a compact binary data format to facilitate fast transfer,
efficient interchange, and economical storage. The CBF design is intended for binary systems, protocols,
and languages, such as embedded systems, time dissemination, and c/c++ , while offering compatible
expression on other platforms and formats such as Java and XML.

CBF acts in concert with Common Calendar Character Format (CCF) to provide comprehensive
description of local date and time with symmetrical conversion between the binary and character based
YMDhms representations.

The CBF binary timestamp is a variable length compound counter with associated metadata. It is made
up of the mandatory Time structure base structure that provides the anchor for any configuration of CBF,
and optional extensions, including the important Local Date structure.

Day Number

Days since UTC1970

seconds, milliseconds, etc

Leap-seconds

TAI-UTC - 10s

Local Date

Time-of-day Timer

Time

or

The variable size design provides a single syntax to construct binary timestamps to accommodate use as
a simple 24 hour timer (using only the mandatory Time structure), or a full local date and time-of-day
timestamp (with the Local Date extension). This flexibility minimizes the total size of the timestamp for
each purpose.

 Days-duration extension

 Time structure (mandatory base)

 Local Date structure extension

 DST Rules extensions

 Counter range extensions

 UTC Offset extensions

The mandatory Time structure contains a 35-bit unsigned counter and sign bit (signed 36-bit). The range
may be increased to 48, 64, or 80 bits using the counter extensions. It can represent resolutions from
seconds to picoseconds depending on the rate indicator. Used by itself it is a simple 24-hour timer.

The Local Date structure extension is added to provide full local date and time-of-day representation. Its
calendar date uses the TAI-UTC API date data structure which includes the day-number-since-UTC1970
and TAI-UTC (leap-seconds). Its time zone metadata uses elements derived from the Common Calendar
Time Zone API.

Additional leap-second metadata provides sufficient information for interpretation by a simple receiving
application that has no leap-second or local time information available, and facilitates conversion to the
CCF YMDhms representation.

When Local Date is used the values of the base Time structure are interpreted as time-of-day. Together,
the compound counter, made up of the time-of-day from Time, and the day-number and leap-seconds
from Local Date, represent the local date and time as an absolute seconds-since-UTC1970 value. For
example, at a seconds resolution (rate), the formula is:

seconds-since-UTC1970=(DayNumber*86400)+(leap-seconds)+(seconds-since-

midnight)

The design, with its compound data elements, lends advantage to reading and interpreting a Common
Calendar timestamp. The emitting application has the responsibility to accurately populate the timestamp
parameters while it has access to leap-second and time zone information. Important aspects of the

Page 3

emitter’s processing are transferred to the timestamp data and metadata and this simplifies the receiver’s
role. The receiver is relieved from performing some computationally intensive processing and there is no
need for access to leap-second and local time information.

Common Calendar specifies a policy of recording the local date and time as known to the emitting system
in all cases. This brings clarity and specificity to the meaning of the data and consistency and simplicity to
generating and interpreting Common Calendar timestamp values.

An outline of CBF features:

• Time structure - mandatory fixed size 64-bit structure containing:

• clock rate enumeration (supports seconds, milliseconds, nanoseconds, etc)

• 36-bit counter extensible to 48, 64, and 80 bits

• flag to indicate the presence of Days-duration extension

• flag to indicate the presence of Local Date structure extension

• Local Date structure – optional fixed size 15 bytes, 120-bit, local date structure containing:

• The CCT origin is UTC1970 (1970-01-01 00:00:10 (TAI) = 1970-01-01T00:00:00 (UTC))

• CCT always records local time as known to the emitting application.

• Ordinal day counter with leap-seconds for approximately -22967 to 22967 year range

• UTC-Offset of local time

• IANA Time Zone Database time zone

• DST bias, change day, change time-of-day

• UTC-Offset shifts and shift time-of-day

• Time-of-day (TOD) Count Mode defines the linkage between the Time and Local Date:

• TOD_LEAPSECOND_UTC_UTC - Leap-seconds are introduced simultaneous with UTC on
local timescales labeled as xx:59:60 as per UTC specification

• TOD_LEAPSECOND_UTC_NTP - Leap-seconds are introduced simultaneous with UTC on
local timescales labeled as xx:59:59 (“freeze”) as per NTP specification

• TOD_LEAPSECOND_UTC_POSIX - Leap-seconds are introduced simultaneous with UTC on
local timescales labeled as xx:00:00 ("roll over and reset") as per POSIX specification

• TOD_LEAPSECOND_MIDNIGHT - Leap-seconds are introduced “at midnight” on each Local
Timescale labeled as 23:59:60 as per UTC specification

• TOD_86400S_DAY_DATE – Date and time-of-day data are treated as 86400-second-days
(Leap-seconds are unavailable or unknown).

• TOD_NONE - time not related to date

• Geostamp

The Common Calendar Timestamp (CCT) specification has been extended to include geographic
coordinates to create a Geostamp. The Geostamp specification was developed in collaboration with Son
Voba of Sync-n-Scale to support "tractability provenance". A Geostamp consists of geographic
coordinates and a CCT timestamp.

For an overview of Common Calendar in general please see
Common Calendar Introduction and Scope

2 Scope

This interoperability standard specifies a variable length binary data structure with mandatory and
optional components and metadata to fully represent deterministic time points and time intervals including
UTC accurate local date and time.

3 Normative References

Common Calendar Date and Time Terms and Definitions

Common Calendar TAI-UTC API

Common Calendar YMDhms API

Common Calendar Local Timescales

Page 4

Common Calendar Time Zone API

Common Calendar Binary Format

Common Calendar Character Format

Common Calendar Geostamp

National Marine Electronics Association
NMEA 0183 Interface Standard
GGA Global Positioning System Fix Data. Time,
Position and fix related data for a GPS receiver $GPGGA
https://www.nmea.org/nmea-0183.html

4 Common Calendar Binary Format

Common Calendar Binary Format (CBF) specifies a compact variable length binary data structure
containing time, date (if applicable), and metadata. It includes sufficient information to construct a
corresponding Common Calendar Character Format (CCF).

A CBF and its corresponding CCF format can have one of six meanings:

• time point with UTC accurate local date and time-of-day

• time point with UTC accurate local date with time portion having no relation to the date

• time point less than 24 hours with no relation to date (< 86400 seconds)

• time point 24 hours or greater with no relation to date (>= 86400 seconds)

• time interval less than 24 hours (< 86400 seconds)

• time interval 24 hours or greater (>= 86400 seconds)

In the case of representation of a time point of UTC accurate local date and time-of-day a CBF and its
corresponding CCF shall contain the local date, time-of-day, and local metadata as known to the emitting
system when generated in accordance with the rules and guidelines set out in Common Calendar Local
Timescales.

A CBF shall not represent an incomplete, ambiguous, or non-deterministic time-point or interval. Any
incomplete data or metadata for the intended purpose shall be regarded as an error and the CBF as a
whole shall be regarded as malformed. Applications should take appropriate action to protect the system
and users from incomplete or erroneous data.

4.1 CBF Components
A CBF is constructed from the mandatory Time data structure CBFTime_st with optional extensions. The
components are assembled to support the required functionality. Each component is described in detail
with sections below. The order of construction of optional components is shown in sections CBF
Construction and Assembly.

4.1.1 Time - CBFTime_st
The CBFTime_st structure is mandatory and provides the fixed-size (64-bit) anchor of the variable length
format. It contains a 35-bit unsigned counter and a sign bit (a 36-bit signed value) together with rate
enumeration, counter size indicator, and extension flags.

The range of the CBFTime_st 35-bit counter may be extended to 48, 64, or 80 bits by addition of the
optional CBFCounterHigh16_st and/or CBFCounterHigh32_st extensions to accommodate 24 hours at
rates higher than milliseconds.

The presence of one or both of the range extensions is indicated by CBFTime_st::m_eCounterSize
holding a CBFCounterSize_et enumeration. See CBFCounterSize_et. The extensions are treated as the
high-words and the CBFTime_st::m_ulCounterLow32 counter as the low-word.

CCT supports several rates, or resolutions. These are indicated by enumerations. See CBFRate_et. Each
requires a counter of sufficient size to accommodate 24 hours (86400 seconds) plus one leap-second
when applicable (86401 seconds).

typedef struct CBFTime_st // 8 bytes, 64-bit

{

unsigned char m_eRateEnumeration:8; // Enumerated clock rates

https://www.nmea.org/nmea-0183.html

Page 5

 // See CBFRate_et

unsigned char m_bLocalDateExt:1; // CBFLocalDate_st extension

 // is present

 // See CBFLocalDate_st

unsigned char m_b24HourPeriodExt:1; // CBF24HourPeriod_st extension

 // is present

unsigned char m_eCounterSize:2; // Enumerated 35/48/64-bit size

unsigned char m_bCounterSign:1; // 1 = counter value is negative

 // See COUNTERSIZE_et

unsigned char m_iCounterHigh3:3; // MSBs of 35-bit counter.

 // Unused when (set to zero) when

 // 16-bit or 32-bit high extensions

 // are active for 48-bit or 64-bit

 // counters

unsigned long m_ulCounterLow32; // 32 bit unsigned counter

 // treated as low word if counter

 // size extension present

unsigned char m_bIsInterval:1; // CBF is an interval

unsigned char m_reserved7:7; // Reserved for media

unsigned char m_reserved8:8; // Reserved for media

} CBFTime_st;

4.1.1.1 Rate enumeration - CBFRate_et
CBF supports several rates, or resolutions. These are indicated by enumerations. See CBFRate_et. Each
requires a counter of sufficient size to accommodate 25 hours (86400 seconds) plus one leap-second
when applicable (86401 seconds).

typedef enum v

{

 CLOCK_UNKNOWN = 0,

 CLOCK_0 , // 1/1 second

 CLOCK_1 , // 1/10 tenths of second

 CLOCK_2 , // 1/100 hundredths of second

 CLOCK_3 , // 1/1000 Millisecond

 CLOCK_6 , // 1/1000000 Microsecond

 CLOCK_9 , // 1/1000000000 Nanosecond

 CLOCK_12 , // 1/1000000000000 Picosecond

 CLOCK_15 , // 1/1000000000000000 Femtosecond

 CLOCK_18 , // 1/1000000000000000000 Attosecond

 CLOCK_21 , // 1/1000000000000000000000 Zeptosecond

 CLOCK_24 , // 1/1000000000000000000000000 Yoctosecond

 CLOCK_44 , // 1/10tothe44th Planck time

} CBFRate_et;

4.1.1.2 Counter Size enumeration - CBFCounterSize_et
The range of the CBFTime_st 36-bit counter may be extended to 48, 64, or 80 bits by addition of the
optional CBFCounterHigh16_st and/or CBFCounterHigh32_st extensions to accommodate 24 hours at
rates higher than milliseconds.

The presence of one or both of the range extensions is indicated by CBFTime_st::m_eCounterSize
holding a CBFCounterSize_et enumeration. See CBFCounterSize_et. The extensions are treated as the
high-words and the CBFTime_st 32-bit counter as the low-word.

typedef enum CBFCounterSize_et // m_eCounterSize:2

{

COUNTERSIZE_32 = 0, // 32-bit counter contained in base object

COUNTERSIZE_48, // 48-bit counter

 // 16-bit counter extension present,

 // CBFTime_st::m_lCounterLow32,

COUNTERSIZE_64, // 64-bit counter

 // 32-bit counter extension present,

Page 6

 // TBOCounter32_st::m_ulCounterHigh32 and

 // CBFTime_st::m_lCounterLow32,

COUNTERSIZE_80 // 80-bit counter

 // 16-bit counter extension present,

 // 32-bit counter extension present,

 // TBOCounter16_st::m_unCounterHigh16 and

 // TBOCounter32_st::m_ulCounterHigh32 and

 // CBFTime_st::m_lCounterLow32,

} CBFCounterSize_et;

The counter size must accommodate 24 hours (86400 seconds) plus one leap-second if applicable
(86401 seconds) of the rate, or resolution. The required sizes have been calculated, for examples, as:

Microseconds requires 37 bits -
86401 * 1000000 = 86401000000, 2^37 = 137438953472 MAX, unused 51037953472

Nanoseconds requires 47 bits -
86401 * 1000000000 = 86401000000000, 2^47 = 140737488355328 MAX, unused 54336488355328

Picoseconds requires 57-bits -
86401 * 1000000000000 = 86401000000000000, 2^57 = 144115188075856000 MAX, unused
57714188075855900

The rates supported, and the required counter sizes for each are:

enum rate resolution counter size

CBFRate_et CBFCounterSize_et

CLOCK_0 1/1 second COUNTERSIZE_32

CLOCK_1 1/10 tenths COUNTERSIZE_32

CLOCK_2 1/100 hundredths COUNTERSIZE_32

CLOCK_3 1/1000 Millisecond COUNTERSIZE_32

CLOCK_6 1/1000000 Microsecond COUNTERSIZE_48

CLOCK_9 1/1000000000 Nanosecond COUNTERSIZE_48

CLOCK_12 1/1000000000000 Picosecond COUNTERSIZE_64

CLOCK_15 1/1000000000000000 Femtosecond COUNTERSIZE_80

CLOCK_18 1/1000000000000000000 Attosecond COUNTERSIZE_80

(current code implementation supports up to picoseconds due to platform 64-bit limit)
(Zeptosecond would require 87 bits and Yoctosecond 97 bits, not currently supported)

If rate is <= CLOCK_3 (milliseconds) the CBFTime_st::m_ulCounterLow32 forms the entire counter and
no counter size extension is required..

If rate is CLOCK_6 (microseconds) or CLOCK_9 (nanoseconds) CBFCounter16_st shall be added and
CBFCounter16_st::m_CounterHigh16 is treated as high word and CBFTime_st::m_ulCounterLow32 as
the low word of the compound 48-bit counter.

If rate is CLOCK_12 (picoseconds) CBFCounter16_st and CBFCounter32_st shall be added. The
CBFCounter32_st::m_CounterHigh32 is treated as high word, CBFCounter16_st::m_CounterHigh16 as a
"mid word", and CBFTime_st::m_ulCounterLow32 as the low word of the compound 80-bit counter.

See CCbf::SetTimeCounter(..) for bit-shift examples from each CBF counter size to uint64_t (unsigned
64-bit integer type).

See CCbf::GetTimeSeconds(..) for bit-shift examples to set CBF compound counter values from seconds
and fractions of seconds.

4.1.2 Counter Size - CBFCounterHigh16_st, CBFCounterHigh32_st
The CBFTime_st::m_ulCounterLow32 counter can be extended to 48-bits by adding
CBFCounter16_st::m_CounterHigh16, or 64-bits by adding CBFCounter32_st::m_CounterHigh32, or 80-
bits by adding both. The presence of these extensions are indicated by CBFTime_st::m_eCounterSize
enumeration. See CBFCounterSize_et.

If rate is <= CLOCK_3 (milliseconds) the CBFTime_st::m_ulCounterLow32 forms the entire counter.

Page 7

If rate is CLOCK_6 (microseconds) or CLOCK_9 (nanoseconds) CBFCounter16_st is added and
CBFCounter16_st::m_CounterHigh16 is treated as high word and CBFTime_st::m_ulCounterLow32 as
the low word of the compound 48-bit counter.

If rate is CLOCK_12 (picoseconds) CBFCounter16_st and CBFCounter32_st are added and
CBFCounter32_st::m_CounterHigh32 is treated as high word, CBFCounter16_st::m_CounterHigh16 as a
"mid word", and CBFTime_st::m_ulCounterLow32 as the low word of the compound 80-bit counter.

See CCbf::SetTimeCounter(..) for bit-shift examples from each CBF counter size to uint64_t (unsigned
64-bit integer type).

See CCbf::GetTimeSeconds(..) for bit-shift examples to set CBF compound counter values from seconds
and fractions of seconds.

The corresponding CCF encoding of rate is contained in the CCF Time Element. See CCF.h, Time
Element.

typedef struct CBFCounterHigh16_st // 16 bit counter extension

{

 unsigned short m_unCounterHigh16;

} CBFCounterHigh16_st;

typedef struct CBFCounterHigh32_st // 32 bit counter extension

{

 unsigned long m_ulCounterHigh32;

} CBFCounterHigh32_st;

4.1.3 24 Hour Period data structure - CBF24HourPeriod_st

CBF24HourPeriod_st extension is used to increase the range of the CBFTime_st counter equal to or
greater than 24 hours (>= 86400 seconds).

The name "24 hour period" is used to avoid the word "day" in this context because only UTC, with its
occasional 86401 second leap-second days, represents accurate calendar dates. The 24-hour Period
Extension indicates a count of fixed-length 86400 second periods, not UTC days.

If the CBF24HourPeriod_st extension is present the CBFTime_st counter value shall be interpreted as a
zero-base 86400 second period within the CBF24HourPeriod_st count.

The CBF24HourPeriod_st::m_ul24HourPeriods member is 21 bits thus matching the range of the 21-bit
DateTaiUtc_st::m_ui1970DayNumber member of DateTaiUtc_st used by TAI-UTC API. See TaiUtcApi.h -
DateTaiUtc_st.

The corresponding CCF element is 24-hour Period Element. See CCF.h, 24-hour Period Element.

CBF24HourPeriod_st can be used to extend the range of a time-point or interval.

If CBFTime_st::m_bIsInterval == false the CBF represents a time-point and the
CBF24HourPeriod_st::m_ul24HourPeriods value holds a zero-based count of 24 hour periods.

The corresponding CCF 24-hour Period Element encoding used as a time-point is E delimiter - (E)vent
time-point >= 24 hours

If CBFTime_st::m_bIsInterval == true the CBF represents an interval and the
CBF24HourPeriod_st::m_ul24HourPeriods value holds a zero-based count of 24 hour periods.

The corresponding CCF 24-hour Period Element encoding used as an interval is P delimiter - (P)eriod
interval >= 24 hours

Use of the CBFLocalDate_st is prohibited if CBFTime_st::m_bIsInterval == true because it is impossible
to represent an accurate duration from a specific date and time without the full values and local time
parameters to represent both the initial and final time points of that interval. For that case consider using
two full CBF date-time local representations and calculate the duration between those two time points. A
CBF can be used to represent that difference.

 // 32 bit 24 hour (86400

typedef struct CBF24HourPeriod_st // second) period extension

{

Page 8

unsigned long m_ul24HourPeriods:21; // count of 86400-second-

 // periods from arbitrary

 // zero origin

 // 2^21 = 2097152 MAX

unsigned long m_ulReserved:11;

} CBF24HourPeriod_st;

4.1.4 Local Date - CBFLocalDate_st

The optional CBFLocalDate_st structure represents the local calendar date together with sufficient
metadata to fully describe local date and time-of-day in accordance with the rules and guidelines set out
in Common Calendar Local Timescales. The CBFDstBias_st extension adds Daylight Saving bias if
applicable. The CBFDstTransDay_st signals a DST change during the day if applicable. The
CBFUtcShift_st extension adds support of UTC-offset shifts if applicable. The presence of
CBFLocalDate_st is indicated by CBFTime_st::m_bLocalDateExt.

If the CBFLocalDate_st extension is present the CBFTime_st counter value represents time-of-day (24
hours plus one leap-second if applicable) on the calendar date indicated by the values of
CBFLocalDate_st. DST information shall be provided by the CBFDstBias_st and CBFDstTransDay_st
extensions if applicable.

The values and metadata of CBFTime_st, CBFLocalDate_st and CBFDstBias_st (if present) shall
always represent the emitting system's local time. There is no need for a choice between "local time"
and "GMT time", because all CBF and CCF timestamps represent local time. One of those local
timescales is "Etc/UTC" which can be used if needed.

The local time information is obtained from the IANI Time Zone Database (Tz Database, TzDb) through
the Time Zone API, including the time zone name and UTC offset, and DST rules if applicable. The
version of the Tz Database source files is recorded to make accurate forensic analysis possible in cases
where the Tz Database data may have changed since a timestamp was written. See TzDatabaseApi.h

The calendar date value itself, CBFLocalDate_st::m_DateTaiUtc_st, includes a zero-based count of days-
since-UTC1970 together with the positive and negative leap-second values. This is the same
DateTaiUtc_st data type used by TaiUtcApi, see TaiUtcApi.h.

Excerpt from TaiUtcApi.h

typedef struct DateTaiUtc_st // 7 bytes, 52-bit

{

signed long m_l1970DayNumber:24; // signed zero-based 86400-second days

 // since 1970-01-01T00:00:00 (UTC)

 // ((2^24)/2)-1 = 8388607 MAX

 // 8388607 / 365.24 = ~22967.38 years

 // (2^24)/2)* -1 = -8388608 MIN

 // -8388608 / 365.24 = ~-22967.38 years

signed long m_lLeapsecsNegLow:8; // Negative Leap-seconds low word

signed short m_nLeapsecsNegHigh:7; // Negative leap-seconds high word

 // Negative TAI-UTC minus initial 10s

 // ((2^15)/2)* -1 = -16384 MIN

signed short m_nLeapsecsHigh:9; // Positive leap-seconds high word

signed char m_nLeapsecsLow:6; // Positive leap-seconds low word

 // TAI-UTC minus initial 10s

 // ((2^15)/2)-1 = 16383 MAX

signed char m_nReserved:2;

} DateTaiUtc_st;

The origin (epoch) of the date and TAI-UTC values shall be:

441762480s TAI = 1970-01-01 00:00:10(TAI) = 1970-01-01T00:00:00(UTC) = MJD 40587. (called
UTC1970). Thus seconds-since-UTC1970 = (1970DayNumber * 86400s) + positive leap-seconds +
negative leap-seconds.

Time zone and UTC offset metadata are included according to the Time Zone API. See TzDatabaseApi.h

Page 9

The optional CBFDstBias_st structure shall be appended to provide required DST metadata if applicable.
See CBFLocalDate_st::m_bDSTExt and CBFDstBias_st.

The optional CBFDstTransDay_st structure shall be appended to provide required DST changes if
applicable. See CBFLocalDate_st:: m_bDstTransDayExt and CBFDstTransDay.

The optional CBFUtcShift_st structure shall be appended to provide required UTC-Offset metadata if
applicable. See CBFLocalDate_st::m_bUtcShiftExt and CBFUtcShift.

The corresponding CCF element is Date Element. See CCF.h, Date Element.

The presence of a CBFLocalDate_st is indicated by
CBFTime_st:: m_bLocalDateExt:1

typedef struct CBFLocalDate_st // 16 bytes, 128-bit

{

DateTaiUtc_st m_DateTaiUtc_st; // UTC1970 Day number

// and Leapsecs values

// See TaiUtcApi.h - 7 bytes, 52-bit

TZDTimeZoneID_st m_TZDTimeZoneID_st; // tz datebase zone id

// see TzDatabaseApi.h - 4 bytes, 32-bit

signed long m_lUTCOffset:17; // UTC Offset in seconds

// 17 bits signed = min -65536 / 3600 =

// -18.20444444 hrs

 // 17 bits signed = max 65535 / 3600 =

 // 18.20416667 hrs

unsigned long m_eTODMode:3; // CBFTodCountMode_et

 // See CBFTodCountMode_et

unsigned long m_eDstMode:2; // DST count mode enum

 // See CBFDstCountMode_et

unsigned long m_bDstBiasExt:1; // CBFDstBias_st present

 // following this

 // TBOLocalTime_st struct

unsigned long m_bDstTransDayExt:1; // Dst Transition Day_st extension

 // see CBFDstTransDay_st

unsigned long m_bUtcShiftExt:1; // CBFUtcShift_st present

 // see CBFUtcShift_st

unsigned char m_bIsLeapSecond:1; // this local second is a leap-second

unsigned char m_bIsLeapSecondDay:1; // today local is a leap-second day

unsigned char m_bIsLeapSecondNegative:1; // leap-second is negative

unsigned char m_lReserved:4;

} CBFLocalDate_st;

4.1.4.1 Time Zone Identity

TzDb encodes the time zone identity as strings, such as “America/New_York”, “Europe/Moscow”.
CCT encodes these as index numbers, derived from The TzDb source files.

typedef struct TZDTimeZoneID_st // 4 bytes, 32 bits

{

unsigned short m_unZoneIdx:10; // tz datebase zone index

 // 2^10 = 1024 MAX

// same variables as TZDDataRelease_st but local here for byte alignment

unsigned short m_unTzDataReleaseLetter:5; // 26 release letters a-z

 // 2^5 = 32 MAX

unsigned short m_bCBFLocationExt:1; // CBFLocation_st present

unsigned short m_unTzDataReleaseYear:12; // UTC1970 zero based year number

 // 1970 + 3465 = year 5435

 // 2^12 = 4096 MAX

unsigned short m_bCBFAbbrExt:1; // CCbf::m_aCBFChar_st16PosixAbbr[16];

unsigned short m_bCBFAbbrChangeExt:1; // CCbf::m_aCBFChar_st16PosixAbbr[16];

unsigned short m_unReserved:2;

Page 10

} TZDTimeZoneID_st;

See Common Calendar Time Zone API

4.1.4.2 Posix Abbreviated Name

Tz Database assigns "time zone abbreviations" to the Posix TZ environment variable.

For example, in time zone "America/New_York", when DST is not in effect,
the TZ environment variable provided by Tz Database is "EST", and when DST is in effect, “EDT”.

Charaters are encoded in a variable length character string, CBFChar_st

typedef struct CBFChar_st

{

unsigned char m_Char:7;

unsigned char m_Next:1;

} CBFChar_st;

Each character is limited to ASCII values 0 - 126.
CBFChar_st.m_Char:7 holds the character.
CBFChar_st.m_Next:1 flags if another character follows.
 if CBFChar_st.m_Next == 1, another character follows
 if CBFChar_st.m_Next == 0, no more characters

CCT carries these encodings in class CCbf as lower-case characters in a 16 byte CBFChar_st array; see
CCbf::m_aCBFChar_st16Abbr;

Only the populated CBFChar_st bytes of this array are written to the CBF binary format.

For example, for the TZ environment variable "EST"
three CBFChar_st bytes are written:
CBFChar_st.m_Char = 'e';
CBFChar_st.m_Next = 1; // have another char
CBFChar_st.m_Char = 's';
CBFChar_st.m_Next = 1; // have another char
CBFChar_st.m_Char = 't';
CBFChar_st.m_Next = 0; // last char

See CBF.h CBFChar_s
See CCbf::SetCBFChar_stStringLowerCase()
See CCbf::GetCBFChar_stString()

4.1.4.3 Posix Abbreviation Name Change

Some Tz Database transitions occur only because the Posix TZ environment variable changes. This is a
rare situation, but supported by the presence CBFAbbrChange_st as flagged by
CBFLocalDate_st::TZDTimeZoneID_st:m_bCBFAbbrChangeExt.

Only the populated CBFChar_st bytes of these arrays are written to the CBF binary format.

typedef struct CBFAbbrChange_st // 37 bytes, 296-bit

{

unsigned long m_ulAbbrChangeTime:17; // Abbr change time-of-day

 // 86400 = 24 hours

 // 17 bits unsigned max 131071 / 3600 = 36.40861111 hrs

CBFChar_st m_aCBFChar_st16Abbr_Before[16];

CBFChar_st m_aCBFChar_st16Abbr_After[16];

unsigned char m_lReserved:6;

} CBFAbbrChange_st;

Page 11

The CBF member is CBFAbbrChange_st;

The presence of the Posix Abbreviation Name Change is indicated by
CBFLocalDate_st::TZDTimeZoneID_st:m_bCBFAbbrChangeExt

4.1.4.4 Time-of-Day Count Mode - CBFTodCountMode_et

CCT provides means to construct the YMDhms counting sequence through Common Calendar Character
Format (CCF) to support either: A) the widely used common practice of introducing leap-seconds
simultaneous with UTC or B) an alternate scheme introducing the leap-second at the end of the local day
(rolling leap-second).

CBFTodCountMode_et instructs how the CBF binary representation is to be converted to the CCF
YMDhms counting sequence representation. Options include support for UTC, POSIX, or NTP YMDhms
sequences.

See Common Calendar Local Timescales.

typedef enum CBFTodCountMode_et

{

TOD_NONE = 0, // Not Time-of-day

 // Time has no relation to Date,

 // Time has zero or "arbitrary" epoch

 // CCF char indicator "a"

TOD_LEAPSECOND_MIDNIGHT, // Leap-seconds introduced at

 // midnight on local timescales

 // (Rolling leap-second)

 // CCF char indicator "m" (midnight)

TOD_LEAPSECOND_UTC_UTC, // Leap-seconds introduced

 // simultaneous with UTC on

 // local timescales

 // Leap-second label

 // 23:59:60

 // CCF char indicator "u" (utc)

TOD_LEAPSECOND_UTC_NTP, // Leap-seconds introduced

 // simultaneous with UTC on

 // local timescales

 // Leap-second label

 // 59:59:59 ("freeze")

 // CCF char indicator "n" (ntp)

TOD_LEAPSECOND_UTC_POSIX, // Leap-seconds introduced

 // simultaneous with UTC on

 // local timescales

 // Leap-second label

 // 00:00:00 ("roll over and reset")

 // CCF char indicator "p" (posix)

TOD_24HOUR_DAY_DATE, // 86400-second-days of calendar

 // (Leap-seconds unknown or unavailable)

 // CCF char indicator "g" (gregorian)

TOD_NA // not set or logic error (default)

} CBFTodCountMode_et;

4.1.4.5 UTC Offset Shift - CBFUtcShift_st

Many time zones have shifted their UTC-offset independent of DST shifts. Tz Database calls this
"STDOFF" for "standard time offset". When this occurs CBFUtcShift_st provides metadata to represent
these UTC-offset shifts.

The presence of a CBFUtcShift_st is indicated by CBFLocalDate_st::m_bUtcShiftExt:1

typedef struct CBFUtcShift_st // 5 bytes, 40-bit

{

Page 12

unsigned short m_unUtcShiftTimeLow:16; // Utc offset shift time-of-day in

seconds

signed short m_nUtcShiftLow:16; // Utc offset shift in seconds

unsigned char m_eUtcShiftDay:2; // Utc offset shift day enum

 // See TzDatabaseApi.h TZDUtcShiftDay_et

signed char m_nUtcShiftHigh:2; // Utc offset shift in seconds

 // 18 bit min -131072 / 3600 = -

36.40888889 hr

 // 18 bit max 131071 / 3600 =

36.40861111 hr

unsigned char m_unUtcShiftTimeHigh:1; // Utc offset shift time-of-day in

 // seconds

 // 86400 = 24 hours

 // 17 bits unsigned max 131071 / 3600 =

// 36.40861111 hrs

unsigned char m_unReserved3:3;

} CBFUtcShift_st;

4.1.5 Daylight Saving Time (DST)

Where Daylight Saving is observed the optional CBFDstBias_st struct extension shall be added. The
presence of CBFDstBias_st is indicated by CBFLocalDate_st:: m_bDstBiasExt:1.

4.1.5.1 Daylight Saving - CBFDstCountMode_et

Daylight Saving offsets may be applied in two modes:

“Conventional” where the DST shift occurs at some mid time-of-day

“Uninterrupted” where the DST shift at midnight

typedef enum CBFDstCountMode_et

{

DSTCOUNTMODE_NOTAPPLICABLE = 0,

DSTCOUNTMODE_CONVENTIONAL, // conventional count mode

DSTCOUNTMODE_UNINTERRUPTED // uninterrupted count mode

} CBFDstCountMode_et;

4.1.5.2 Daylight Saving - CBFDstBias_st

If a DST shift is in effect its value, called “DstBias”, is held by CBFDstBias_st:: m_nDstBias

Presence is signaled by CBFLocalDate_st:: m_bDstBiasExt:1

typedef struct CBFDstBias_st // 2 bytes, 16-bit

{

signed short m_nDstBias; // DST bias in effect

 // min -32768 / 3600 = -9.102222222 hr

 // max 32767 / 3600 = 9.101944444 hr

} CBFDstBias_st;

4.1.5.3 Daylight Saving - CBFDstTransDay_st

If a DST shift is to occur during this day the CBFDstTransDay_st shall appear.

Presence is signaled by CBFLocalDate_st:: m_bDstTransDayExt:1

typedef struct CBFDstTransDay_st // 5 bytes, 40-bit

{

Page 13

unsigned short m_unDstTransTimeLow:16;// DST transition time of day

 // 17 bit unsigned max 131071 = 36.40861111 hr

signed short m_nDstBiasChangeLow:16; // DST bias transition value

 // 18 bit min -131072 / 3600 = -36.40888889 hr

 // 18 bit max 131071 / 3600 = 36.40861111 hr

signed char m_nDstBiasChangeHigh:2;

unsigned char m_unDstTransTimeHigh:1;

unsigned char m_lReserved5:5;

} CBFDstTransDay_st;

Enumerated values used by CBFDst_st variables are defined by Tz Database API. See
TzDatabaseApi.h

typedef enum TZDDstChangeDay_et

typedef enum TZDDstBias_et

4.2 Construction of CBF

CBFTime_st structure is mandatory and the anchor of the binary image. Optional counter extensions may
be used to increase its counter range for any configuration.

The state of the CBFTime_st::m_bIsInterval flag indicates if the CBF represents a time-point
(m_bIsInterval == false) or a time interval (m_bIsInterval == true).

4.2.1 As Time-point:

If m_bIsInterval == false a CBFTime_st represents a time-point.

Used without the optional CBFLocalDate_st extension, the values of a CBFTime_st represent a time point
within a 24 hour period (86400 seconds) with no reference to any date or other timescale. It represents a
zero-based count of time units from an origin marked as "zero". It is a timestamp of a simple timer, like a
"game clock" or "stop-watch".

Combined with the optional CBFLocalDate_st extension the CBF represents a leap-second accurate local
date and time. The CBFTime_st counter value represents time-of-day (24 hours plus one leap-second if
applicable) on the calendar date indicated by the CBFLocalDate_st member values. The presence of
CBFLocalDate_st is indicated by the CBFTime_st::m_bLocalDateExt flag.

If DST is observed in the time zone, the CBFDst_st extension shall be present, providing the necessary
DST information. The presence of CBFDst_st is indicated by the CBFLocalDate_st::m_bDSTExt flag.

4.2.1.1 As UTC accurate local time-point timestamp :

CBFTime_st – mandatory
CBFTime_st::m_bIsInterval == false
CBFCounterHigh16_st and/or CBFCounterHigh32_st optional
CBFLocalDate_st – local date extension
CBFLocalDate_st::m_eTODMode == one of CBFTodCountMode_et:

• TOD_LEAPSECOND_UTC_UTC - Leap-seconds introduced simultaneous with UTC on local
timescales, leap-second label 23:59:60, CCF TOD Count Mode char indicator "u" (utc)

• TOD_LEAPSECOND_UTC_NTP - Leap-seconds introduced simultaneous with UTC on local
timescales, leap-second label 59:59:59 ("freeze"), CCF TOD Count Mode char indicator "n" (ntp)

• TOD_LEAPSECOND_UTC_POSIX - Leap-seconds introduced simultaneous with UTC on local
timescales, leap-second label 00:00:00 ("roll over and reset"), CCF TOD Count Mode char
indicator "p" (posix)

• TOD_LEAPSECOND_MIDNIGHT - Leap-seconds introduced at midnight on local timescales,
Leap-second label 23:59:60, CCF TOD Count Mode char indicator "m" (midnight)

CBFDst_st – Daylight Saving Time metadata extension (if applicable)

4.2.1.2 As UTC accurate local date with time portion having no relation to the date:

CBFTime_st – mandatory
CBFTime_st::m_bIsInterval == false
CBFCounterHigh16_st and/or CBFCounterHigh32_st optional
CBFLocalDate_st – local date extension

Page 14

CBFDstBia_st – Daylight Saving Time metadata extension (if applicable)
CBFDstTransDay_st - Daylight Saving Change Day
CBFLocalDate_st::m_eTODMode == CBFTodCountMode_et ==
 TOD_NONE - Not Time-of-day, Time has no relation to Date, Time has zero or "arbitrary" epoch
 CCF TOD Count Mode char indicator "a"

4.2.1.3 As time-point timestamp < 86400 seconds:
CBFTime_st – mandatory
CBFTime_st::m_bIsInterval == false
CBFCounterHigh16_st and/or CBFCounterHigh32_st optional

4.2.1.4 As time-point timestamp >= 86400 seconds:
CBFTime_st – mandatory
CBFTime_st::m_bIsInterval == false
CBFCounterHigh16_st and/or CBFCounterHigh32_st optional
CBF24HourPeriod_st – 24 hour period counter extension

4.2.2 As Time Interval
If CBFTime_st::m_bIsInterval == true the CBF represents an interval, rather than a time-point.

Used without the optional CBF24HourPeriod_st extension the CBF represents an interval less than 24
hours (< 86400 seconds).

If optional CBF24HourPeriod_st extension is present the CBF represents an interval equal to or greater
than 24 hours (>= 86400 seconds). The CBF24HourPeriod_st::m_ul24HourPeriods value represents a
count of 24 hour periods (1 == 86400 seconds) and the CBFTime_st counter value represents a count of
86400 seconds within that 24 hour period. The CBF24HourPeriod_st shall be present if the state of
CBFTime_st::m_bIsInterval == true and the total counter value exceeds 86400.

Note intervals >= 86400 seconds are not accurate UTC date and time because Leap-seconds are not
accounted for; intervals are made up of 24 hour (86400 second) periods, not UTC accurate days.

4.2.2.1 As time interval < 86400 seconds:
CBFTime_st – mandatory
CBFTime_st::m_bIsInterval == true
CBFCounterHigh16_st and/or CBFCounterHigh32_st optional

4.2.2.2 As time interval >= 86400 seconds:
CBFTime_st – mandatory
CBFTime_st::m_bIsInterval == true
CBFCounterHigh16_st and/or CBFCounterHigh32_st optional
CBF24HourPeriod_st – 24 hour period counter extension

4.2.3 Assembly Order

A CBF shall be formed with the mandatory CBFTime_st structure with optional components concatenated
in the following order:

• To form a time-point timestamp < 86400 seconds:
CBFTime_st - mandatory and CBFTime_st::m_bIsInterval == false

 CBFCounterHigh16_st and/or CBFCounterHigh32_st optional

 extensions to form 48, 64, or 80 bit counter

• To form a time-point timestamp >= 86400 seconds:
CBFTime_st - mandatory and CBFTime_st::m_bIsInterval == false

 CBFCounterHigh16_st and/or CBFCounterHigh32_st optional

 extensions to form 48, 64, or 80 bit counter

CBF24HourPeriod_st - optional 24 hour period counter

• To form a UTC accurate local time-point timestamp:
CBFTime_st - mandatory and CBFTime_st::m_bIsInterval == false

 CBFCounterHigh16_st and/or CBFCounterHigh32_st optional

 extensions to form 48, 64, or 80 bit counter

CBFLocalDate_st - optional local date extension

CBFDst_st - optional Daylight Savings Time metadata extension if applicable

CBFUtcShift_st - optional UTC-offset shift metadata extension if applicable

Page 15

Variable length Posix TZ environment string of CBFChar_st

 in array CCbf::m_aCBFChar_st16Abbr[]

Interval and LocalDate are exclusive

• To form a interval < 86400 seconds:
CBFTime_st - mandatory and CBFTime_st::m_bIsInterval == true

 CBFCounterHigh16_st and/or CBFCounterHigh32_st optional

 extensions to form 48, 64, or 80 bit counter

• To form an interval >= 86400 seconds:
CBFTime_st - mandatory and CBFTime_st::m_bIsInterval == true

 CBFCounterHigh16_st and/or CBFCounterHigh32_st optional

 extensions to form 48, 64, or 80 bit counter

CBF24HourPeriod_st - optional day duration counter

CBF assembly order in pseudocode -

CBFTime_st - mandatory primary component

if(m_CBFTime_st.m_eCounterSize == COUNTERSIZE_48)

 append CBFCounterHigh16_st

if(m_CBFTime_st.m_eCounterSize == COUNTERSIZE_64)

 append CBFCounterHigh32_st

if(m_CBFTime_st.m_eCounterSize == COUNTERSIZE_80)

 append CBFCounterHigh16_st

 append CBFCounterHigh32_st

// Interval and LocalDate are exclusive

if(m_CBFTime_st.m_bIsInterval)

 {

 if(m_CBFTime_st.m_b24HourPeriodExt)

 append CBF24HourPeriod_st

 }

else

 {

 if(m_CBFTime_st.m_bLocalDateExt)

 append CBFLocalDate_st

 if(m_CBFLocalDate_st.m_bUtcShiftExt)

 append CBFUtcShift_st

 if(m_CBFLocalDate_st.m_bDSTExt)

 append CBFDst_st

 if(m_CBFLocalDate_st.m_TZDTimeZoneID_st.m_bCBFAbbrExt)

 append number of CBFChar_st in array m_aCBFChar_st16Abbr[]

 if(m_CBFLocalDate_st.m_TZDTimeZoneID_st.m_bCBFLocationExt)

 append CBFLocation_st

 }

See CCbf::AssembleCbf(char* pcaBinayCbf, int* piLen);

Assembled CBF size guide:

• Minimum size 8 bytes (mandatory CBFTime_st)

• Typical size with date and time may be the range of 30 - 34 bytes

• Maximum size with date, time and location could be 76 bytes

4.3 Geostamp

The Common Calendar Timestamp (CCT) specification may include geographic coordinates to create a
Geostamp. The Geostamp specification was developed in collaboration with Son Voba of Sync-n-Scale to
support "tractability provenance".

A Geostamp consists of geographic coordinates and a CCT timestamp. Geostamps are technically
accurate, making them suitable for general and legal purposes where time recording is used for tracking

Page 16

and auditing and a wide range of spatial-temporal geographic information systems (4D GIS)
applications in machine learning, artificial intelligence, data analytics and blockchain distributed ledgers.

Like CCT, Geostamps can be formed in either a binary or character format. The binary format supports
efficient machine interoperability while the character format is human readable making their meaning
accessible to those less familiar with the intricacies of timekeeping and geographic representations.

CCT carries coordinates in the form specified by National Marine Electronics Association (NMEA), NMEA
0183 Interface Standard, GPGGA., GGA Global Positioning System Fix Data. Time, Position and fix
related data for a GPS receiver.

The NMEA data is translated into the CBFLocation_st structure in the CCT binary CBF format. The CBF
data is reflected in the CCF character format in the Location Element field.

Geographic coordinates are carried in the CBFLocation_st structure.

The presence of the CBFLocation_st structure in the CCT timestamp is indicated by the
CBFLocalDate_st::m_TZDTimeZoneID_st::m_bCBFLocationExt flag.

4.3.1 Geographic Coordinates - CBFLocation_st

The CBFLocation_st struct carries coordinates in a compact form consistent with data as specified by the
NMEA 0183 Interface Standard, GPGGA, GGA Global Positioning System Fix Data. Time, Position and
fix related data for a GPS receiver.

typedef struct CBFLocation_st // 14 bytes
{

unsigned long m_i21Lat_uMin:21; // micro-minutes -100000 to 100000 range

 //[((2^21)/2)-1 = 1048575 MAX]

unsigned long m_i9Lat_Deg:9; // degrees -90 to 90 range, negative is South

 // [((2^9) / 2) - 1 = 255 MAX]

unsigned long m_Pad1:2;

unsigned long m_i21Lng_uMin:21; // micro-minutes -100000 to 100000 range

 // [((2^21)/2)-1 = 1048575 MAX]

unsigned long m_i9Lng_Deg:9; // degrees -180 to 180 range, negative is

 // West [((2^9) / 2) - 1 = 255 MAX]

unsigned long m_Pad2:2;

unsigned long m_i19Alt_cm:19; // +- 20000 meter x 100 centimeter range

 // [((2^19) / 2) - 1 = 262143 MAX]

unsigned long m_i7Lng_Min:7; // minutes 0 to 60 range [((2^7) / 2) - 1 =

 // 63 MAX]

unsigned long m_Pad3:6;

unsigned char m_i7Lat_Min:7; // minutes 0 to 60 range [((2^7) / 2) - 1 =

 // 63 MAX]

unsigned char m_bSourceIsExtern:1; // flag is external location, otherwise is

 // Tz Database location

unsigned char m_bIsValidLat:1; // flag Latitude value valid

unsigned char m_bIsValidLng:1; // flag Longitude value valid

unsigned char m_bIsValidAlt:1; // flag Altitude value valid

unsigned char m_Pad4:5;

} CBFLocation_st;

See TzDatabaseAPI.h, CBFLocation_st
See CCct.h, CCct.cpp class CCct
int CCct::SetLocation(char* psLatitude, char* psLongitude, char* psAltitude);

4.4 CBF RIFF Wrapper
One or more CBFs may be contained in a CBF RIFF Wrapper.

The four-cc of the CBF RIFF shall be "CCBF"

Page 17

The four-cc of each CBF chunk shall be "ccbf"

See CCTRiffCbf.h
#define FOURCC_CCBF "CCBF" // RIFF header

#define FOURCC_ccbf "ccbf" // CBF chunk

See CCTRiffCbf.h and CCTRiffCbf.cpp

The CBF RIFF Wrapper can be opened, populated by one or more assembled CCBs, and closed by

CCct::WriteCRiff_Ccbf();

The CBF RIFF Wrapper can be opened, populating one or more CCbf classes, and closed by

CCct::ReadCRiff_Ccbf();

