Common Calendar Conventional Timestamp

Common Calendar Timestamp System

Brooks Harris Version 1 2025-02-02 The author dedicates this work to the public domain

Table of Contents

A 14 o Yo 1F o {0 Y o H PP UTUPPRORPRP 2
N Yo o 1 o 1 4
3 NOIMALIVE REFEIENCES .. ittt st e e sttt e e st b e e e e snbteeessnneeeas 4
4 Common Calendar Conventional Binary Format (CBFC)ccooicciiiiiieeeiiiiiiiiee e s esnieeee e e e e 5
4.1 (O 2T @ @ 4 0T 1] | £ 5
41.1 D= L= T T TP 5
4.1.2 Decimal Fraction RaAte ..., 6
4.1.3 Decimal Fractions of SECONAS.........coooii i, 6
4.1.4 LOCAI DAtB.... e, 6
41.4.1 TIME ZONE IHBNTILYeeeeeeeie ettt ettt e e e e e et e e e e e e e e sabb e b e e e e e e e s e annbbeeeeaeeesaannenees 7
4.1.4.2 (10T (=T AL I O 1 7= SO 7
41.4.3 Time-0f-Day COUNE MOAE..........uiiiiiiiee ettt e e e e e e e e s e e e e e e e e e aneneee 7
4.2 (01 2] = O @] 1 £=1 17 0o (o] o H PRSP 8
o S 14T~ o o1) R 8
42.1.1 UTC accurate local date and time-0f-0aycceeeiiiiiiiiiiiiiee e e e 9
42.1.2 UTC accurate local date with arbitrary time-of-day.........ccccccceiiiiiiiiiiie e 9
4.2.1.3 Time-poiNt 1€SS than 24 NOUIS.......cciiii i e e s e e e e e s e nnnneees 9
42.1.4 Time-point 24 hours or greater (EVENT)........oo e 10
4.2.2 INEEIVAL ..., 10
4221 Interval Iess than 24 hOUIS.........oooo 10
4.2.2.2 Interval 24 hours or greater (PeriOd)oo i eeieeeiie ettt e e e e e e 10
4.3 1T 1S =10 o] o IO PP P PP PPPPPPPP 10
43.1 (€T=Tolo [£=10] a1 (ol o To] £ 19 F-1 (= TP URTT T UUPUPPPUR 11
4.4 N SEY= 0] o] Y2 o = 12
45 L VLY = T o] o1 12
5 Common Calendar Conventional Character Format (CCFC)uuuuiiiiiiiiiiiiieiieee e seiieee e e e e 13
5.1 (IS @ IR T Y = T4 =1 (o] o O PP 13
5.2 (01 P = od (=T ST = S RPN 13
5.3 (=T o =T 010 T= (o] R PP RR 14
5.4 Data Field EIEMENtS ..., 14
5.4.1 I TSN 1= =T | 14
54.1.1 UTC accurate local date and time-0f-day ... 15
5.4.1.2 UTC accurate local date and time having no relation to date...........cccccoeiiiiiiiieiiniiiiiiieeeeeee 15
54.1.3 Time point €SS than 8B6400Sciii i e et e e e e e e sbbe e e e e e e e e e nnneees 16
54.1.4 Time point equal or greater than 86400S............cccvviiieiee e e e e 16
5.4.1.5 INterval 1€SS than BB400Socuuiiiiiiiiie ettt e e et e e s st e e s snbe e e e s sebeeeessnbeeeeeas 16
5.4.1.6 Interval equal or greater than 86400Suuiiiiiiiiiiiiiiier e s e e e e r e e e e 16
55 YT o1 1= 0 01T o | PP RR 17
5.6 (=T o To Il I T=T 4= o PP 17
5.7 (D= Ll =T 1= o O PP PRR 18
5.8 UTC OffSEt EIBMENL..... ., 19
5.9 QLI TSRZ4 o 1= = 1= 0 0= £ 19
5.10 IANA Time Zone Database Version Element ... 20
511 TOD Count MOAE EIBMENT ... a e aaa s e naansnsnensnnnssnnnnnnnns 20
5.12 ASSEMDBIY AN OFUE ...ttt e e et e e e e e e s ab b e e e e e e e e e snbbeaeeeaeas 21
5.12.1 UTC accurate local date and time-0f-0ayccouriiiiiiiiii e 21
5.12.2 UTC accurate local date and time with no relation to the date...........cccocoeeeiiiiinic e, 22
5.13 Time point 1SS than 8B6400S.......ccieeeiiiiiieiee e ceeer e e e e e s e s re e e e e e s s e e e e eeeessnnnrrrneeees 22
5.14 Time point equal or greater than 86400Scccuvuiiiieeei i s s e e e srnrrreeeees 22
5.15 INterval [€SS than BBA00S.........cuuiiiiiiiiie ettt ettt e s et e e s st e e s enbbe e e s anbbeeeeaneee 23
5.15.1 Interval equal or greater than 86400S...........cuuiieiiiiiieiieiieee e e e e e s s s e e e e e s s s rrreae e e s e annanes 23
5.16 =0 1S3 7= 0] o 23

Page 1

L0 I T8 A I Yo7z 1o I = [T 4 =Y) 24

6 Common Calendar ConVeNntional APlocuiiiiiiii e 25
ANNEX A - CCT SEANAArd RAIESeeieiiiiiiiiiiiiii ettt e e e e e bbb e e e e e e e e aabbeeeeaaeeesannnbeeeaaaeeaanns 26
ANNEX B - CCFC CRAlACIEI SBL .. .uuiiiiiiiiiiiiiiiii ettt e ettt e e e e et e b et e e e e e s s s nbbeeeeaaaeesaanbbeeeaaaeeaanns 28
Annex C - CCFC EXample HTUSTIAtIONS ...ttt e e e e e s s anebeeeaaaeeaaans 31
Annex D - Example Listing from CCT Reference Implementation ... 32
Notation

“YMDhms” is shorthand for year-month-day hour:minute:second representation.

ISO 8601 representation is supplemented with suffixes (UTC) and (TAI), for example
1970-01-01 00:00:10 (TAI) = 1970-01-01T00:00:00 (UTC).

“UTC1970" is shorthand for 1970-01-01 00:00:10 (TAI) = 1970-01-01T00:00:00 (UTC)

1 Introduction

The Common Calendar Conventional Timestamp (CCTC) presents a standardized form of traditional
timestamps.

Most timekeeping systems adhere to the sets of rules specified in several standards:

e The IEEE Portable Operating System Interface (POSIX) specifies rules that define how time will
be handled within operating systems. It based on the ISO/IEC 9899, Programming languages, C.
These rules underpin most timekeeping interoperability.

e POSIX specifies that date and time be recoded as a zero-based integer count of seconds-since-
UTC1970 (time_t) and how this count is to be encoded in YMDhms form (struct tm, “broken down
time”). This is the basic design of conventional timekeeping.

e |ANA Time Zone Database (TzDb) supplements POSIX with time zones and local time rule sets.
It maintains source data, algorithms and reference implementations (zic.c and zdump.c) to
express local time consistent with POSIX time.

e |SO 8601 Date and time, Representations for information interchange (8601) defines methods for
character representation of date and time. It provides various optional representations and is
typically used by systems to represent date and time in character form both as interoperable text
strings and for presentation to human users.

e |TU-R Recommendation TF.460 defines how leap-seconds are to be incorporated in the calendar
YMDhms representation.

Systems combine these rule sets to implement timekeeping on various platforms. There are technical
subtleties to these specifications and their implementations. The historical development on many
platforms over the years has resulted in a wide variety of slightly different practices depending on the era
of development, the capability of the machines and the choices made to satisfy user requirements within
the constraints of the available technology. Some of these inconsistencies persist in modern systems and
there is no single standardized unambiguous timestamp.

CCTC has been developed to provide uniform and comprehensive representation of local time. CCTC
can be used in most cases where conventional timestamps are used such as operating systems, file
systems, network time, databases and desktops in binary and character formats.

Common Calendar Conventional Binary Format (CBFC) provides a compact binary data format to
facilitate fast transfer, efficient interchange, and economical storage.

Common Calendar Conventional Character Format (CCFC) provides a character-based format that acts
in concert with CBFC with symmetrical conversion between the two.

Optional extensions can support Society of Moving Pictures and Television Engineers (SMPTE) timecode
labeling of video and audio media.

Common Character Conventional API provides high-level methods for constructing, manipulating, writing,
reading of the timestamp formats.

Page 2

Common Calendar Conventional Binary Format (CBFC)

Common Calendar Conventional Binary Format (CBFC) specifies a binary data format. Like POSIX time,
it is made up of seconds-since-UTC1970 and decimal-fractions-of-seconds combined with TzDb time
zone metadata. The design is intended for binary systems, such as operating systems, embedded
systems, protocols such as time dissemination, and expression in languages such as c/c++, Java and
XML.

The CBFC is made up of the mandatory Date Time structure that provides the anchor for any
configuration of CBFC, and optional extensions, including the important Local Date structure.

CCTC Binary Format (CBFC)

Date Time Local Date
| Seconds-since-1970 l:
or Time Zone |dentity

UTC-offset (TzDb gmtoff)

Time-of-day Count Mode
Count of seconds

and decimal fractions

Date Time structure is made up of a 6-byte 48-bit zero-based count of seconds-since-UTC1970 and
decimal-fractions-of-seconds. Used by itself it is a simple 24-hour timer. The Local Date structure
extension may be added to provide full local date and time-of-day representation. Its time zone metadata
uses elements derived from the Common Calendar Time Zone API.

A Time-of-day Count Mode is included to indicate the YMDhms labeling sequence.
Common Calendar Conventional Character Format (CCFC)

Common Calendar Character Format (CCFC) specifies a character based machine-readable interchange
format in YMDhms form to impart familiar meaning to human users with the necessary and sufficient
metadata to fully describe local date and time for interoperable machine interchange. It also supports
representation of time points and intervals unrelated to calendar date.

CCFC is designed to reflect equivalent data and metadata contained in Common Calendar Conventional
Binary Format (CBFC) to provide symmetrical and complete conversion between the two. They are
designed as tightly coupled pair, and this specification references the CBFC specification and the CCT
reference implementations of CCFC and CBFC to make clear the connections between the CBFC data
and metadata. The corresponding CCFC character representations, and the details of conversion
algorithms required.

The CCFC format can be used independently of CBFC if sufficient information is available. It may be most
convenient to implement CCFC in combination with CBFC.

CCTC Character Format (CCFC)
D2024-11-03T01:00:00.999U-07Zamer ica/denverVvV2024aMuX

The CCT reference implementation implements CCFC and CBFC in the CCTCLIib library. CBFC is
implemented as class CCbfC and the CBFC data types are defined in CBFC.h header. CCFC is
implemented as class CCcfC, and delimiter characters are explicitly defined in the CCFC.h header. See
CCTCLIib/CCFC.h, CCcfC.h, and CCcfC.cpp. See CCTCLIib/CBFC.h, CCbfC.h, and CCctC.cpp.

Geostamp

The Common Calendar Timestamp (CCT) specification can be extended to include geographic
coordinates to create a Geostamp. The Geostamp specification was developed in collaboration with Son
Voba of Sync-n-Scale to support "tractability provenance”. A Geostamp consists of CCT timestamp and
geographic coordinates.

For an overview of Common Calendar in general please see
Common Calendar Introduction and Scope

Page 3

In addition to CCT Conventional (CCTC), the subject of this document it, Common Calendar also
presents two other types, or classes, of timestamps:

CCT Media (CCTM) - Optimized for labeling video and audio media.

CCT Enhanced (CCTE) — Similar to CCTM while also maintaining aspects of the TzDb source data which
are typically not included in timestamps used in common practice.

Common Character Conventional API

Common Character Conventional API provides high-level methods for constructing, manipulating, writing,
reading of the timestamp formats.

2 Scope

This interoperability standard specifies a standardized form of timestamps in binary and character formats
consistent with POSIX-time, TzDb time zone rules, and 1SO 8601 text formatting. It includes metadata to
fully represent deterministic time points and time intervals including UTC accurate local date and time.

3 Normative References

Common Calendar Date and Time Terms and Definitions
Common Calendar TAI-UTC API

Common Calendar YMDhms API

Common Calendar Local Timescales

Common Calendar Time Zone API

IEEE Portable Operating System Interface, IEEE Std 1003.1™-2024 Edition
https://pubs.opengroup.org/onlinepubs/9799919799/

ISO/IEC 9899 - Programming languages - C
https://www.open-std.org/JTC1/SC22/WG14/www/standards

IANA Time Zone Database
https://www.iana.org/time-zones

RFC 6557, Procedures for Maintaining the Time Zone Database
https://www.rfc-editor.org/rfc/rfc6557.html

RFC 9636, The Time Zone Information Format (TZif)
https://www.rfc-editor.org/rfc/rfc9636.htmI#RFC7808

RFC 4833, Timezone Options for DHCP
https://www.rfc-editor.org/rfc/rfc4833

RFC 5545, Internet Calendaring and Scheduling Core Object Specification (iCalendar)
https://www.rfc-editor.org/rfc/rfc5545

ITU-R Recommendation ITU-R TF.460-6, Standard-frequency and time-signal emissions
https://www.itu.int/rec/R-REC-TF.460/en

ISO 8601-1:2019, Date and time - Representations for information interchange
https://www.iso.org/iso-8601-date-and-time-format.html

Common Calendar Geostamp

National Marine Electronics Association

NMEA 0183 Interface Standard

GGA Global Positioning System Fix Data. Time,

Position and fix related data for a GPS receiver $§GPGGA
https://www.nmea.org/nmea-0183.html

Page 4

https://www.iana.org/time-zones
https://www.rfc-editor.org/rfc/rfc6557.html
https://www.rfc-editor.org/rfc/rfc9636.html#RFC7808
https://www.rfc-editor.org/rfc/rfc4833
https://www.iso.org/iso-8601-date-and-time-format.html
https://www.nmea.org/nmea-0183.html

4 Common Calendar Conventional Binary Format (CBFC)

Common Calendar Conventional Binary Format (CBFC) specifies a compact variable length binary data
structure containing

1) Mandatory CCTDateTime_st structure holding seconds-since-UTC1970 or
seconds (as timer or interval).

2) Optional CCTCDecimalFrac32_st structure holding decimal fractions of
seconds at a specified rate (resolution).

3) Optional CCTCLocalDate_st holding TzDb time zone identity, TzDb release
(version), and current local UTC-offset.

A CBFC and its corresponding CCFC format may have one of six meanings:

time point with UTC accurate local date and time-of-day

time point with UTC accurate local date with time portion having no relation to the date
time point less than 24 hours with no relation to date (< 86400 seconds)

time point 24 hours or greater with no relation to date (>= 86400 seconds)

time interval less than 24 hours (< 86400 seconds)

time interval 24 hours or greater (>= 86400 seconds)

In the case of representation of a time point of UTC accurate local date and time-of-day a CBFC and its
corresponding CCFC shall contain seconds-since-UTC1970, and time zone metadata as known to the
emitting system when generated in accordance with the rules and guidelines set out in Common
Calendar Local Timescales.

A CBFC shall not represent an incomplete, ambiguous, or non-deterministic time-point or interval. Any
incomplete data or metadata for the intended purpose shall be regarded as an error and the CBFC as a
whole shall be regarded as malformed. Applications should take appropriate action to protect the system
and users from incomplete or erroneous data.

4.1 CBFC Components

A CBFC is constructed from the mandatory Date Time data structure CCTDateTime_st with optional
extensions for decimal fractions of seconds and time zone. The components are assembled to support
the required functionality. Each component is described in detail with sections below. The order of
construction of optional components is shown in sections CBFC Construction and Assembly.

4.1.1 Date Time

The CCTDateTime_st structure is mandatory and provides the fixed-size (64-bit) anchor of the variable
length format. It contains a count of seconds and decimal fractions since UTC1970 and extension flags
indicating presence of decimal fractions and time zone extensions. The counter is a 48-bit 6-byte data
type, giving a range of approximately -2229912 to 2229912 years.

typedef struct CCTDateTime_st // 8 bytes, 64-bits
{
unsigned char m_eDecFracRate:4; // Enumerated rates of decimal fractions

// See CRateTable.h CBFRate_et
unsigned char m_blLocalDateExt:1; // CCTCLocalDate_st extension
// is present
// See CBFLocalDate_st
unsigned char m_blslnterval:1; // CCTC is an interval
unsigned char m_bSecslsNegative:1; // 1 = seconds counter value is negative
unsigned char m_Reservedl:1;
unsigned char m_Reserved8:8;
// Seconds since 1970 zero-based counter
unsigned short m_unSecsHighl6; // 16 bit unsigned high word
unsigned long m_ulSecsLow32; // 32 bit unsigned low word
// high/low 48 bits 6 bytes
// -140737488355328.00 min
// 140737488355327 .00 max
// range 1628906115.22 days

Page 5

// approx 4459823.99 years;
// approx -2229912 to 2229912 years
} CCTDateTime_st;

m_eDecFracRate

Enumerated value of rate, or resolution, of decimal fraction. The rates are enumerated in CRateTable.h
CBFRate_et. If m_eDecFracRate > CLOCK_0 (seconds) the CCTCDecimalFrac32_st shall be present.
The CCTCDecimalFrac32_st struct holds the value of the decimal fraction of seconds at the indicated
rate.

m_bLocalDateExt
Flag indicating the presence of the CCTCLocalDate_st stuct. If CCTCLocalDate_st is present the CCTC
timestamp is a date and time-of-day. See section Local Date.

m_blsinterval
Flag indicating the values of CCCT are an interval.

m_bSecslIsNegative
Flag indication counter value is negative

m_unSecsHigh16
unsigned short high word of counter

m_ulSecsLow32
unsigned long low word of counter

4.1.2 Decimal Fraction Rate

CBFC supports several rates, or resolutions, of decimal fraction of seconds. These are indicated by
enumerations. CCT “standard rates” are enumerated in CCTRateLib, CRateTable.h.
See Annex A - CCT Standard Rates

typedef enum CBFRate_et

CLOCK_UNKNOWN =0,
CLOCK O // 1/1 second

CLOCK_1 , // 1/10 tenths of second
CLOCK 2 , // 1/100 hundredths of second
CLOCK_3 , // 1/1000 millisecond
CLOCK 4 , // 1/10000 10ths of millisecond, 100 microsecond
CLOCK_5 , // 1/100000 100ths of millisecond, 1000 microsecond
CLOCK 6 , // 1/1000000 microsecond
CLOCK_7 , // 1/10000000 10ths of microsecond, 100 nanosecond
CLOCK 8 , // 1/100000000 100ths of microsecond, 1000 nanoseconds
CLOCK_9 , // 1/1000000000 nanosecond

-- abridged --

} CBFRate_et;

4.1.3 Decimal Fractions of Seconds

Optional if decimal fractions of second are included. Presence indicated by
CCTDateTime_st::m_eDecFracRate == one of the CLOCK_x CTCRate_et enumerations greater than
CLOCK_O.

typedef struct CCTCDecimalFrac32_ st // 4 bytes, 32 bit
{
signed long m_IDecimalFrac32; // 2147483647 max -2147478648 min decfrac

// 1000000000 max nanoseconds
} CCTCDecimalFrac32_st;

4.1.4 Local Date

The optional CCTCLocalDate_st structure represents the time zone identity together with UTC-offset. The
presence of CBFCLocalDate_st is indicated by CCTDateTime_st:: m_bLocalDateExt..

Page 6

The local time information is obtained from the IANI Time Zone Database (TzDb) through the Time Zone
API, including the time zone identity and UTC-offset. See TzDatabaseApi.h.

The m_ICurUTCOffset member is the primary UTC-offset plus any secondary (DST) offset that may be
in effect, consistent with the TzDb gmtoff value.

typedef struct CCTCLocalDate st // 8 bytes, 64-bit

CCTCZonelD_st m_CCTCZonelD_st; // TzDb zone index and release
signed long m_ICurUTCOffset:21; // Current UTC Offset in seconds
// as per 8601 and TzDb gmtoff
signed long m_eTodCntMode:3; // Enumerated Leap-second Count Mode
// See CBFLSTODMODE_et
signed long m_IReserved:8;
} CCTCLocalDate_st;

The corresponding CCFC element is Date Element. See CCFC.h, Date Element.

4.1.4.1 Time Zone Identity

TzDb encodes the time zone identity as strings, such as “America/New_York”, “Europe/Moscow”. CCTC
encodes these as index numbers, derived from The TzDb source files.

The version of the TzDb release source files is recorded to make accurate forensic analysis possible in
cases where the TzDb data may have changed since a timestamp was written.

typedef struct CCTCZonelD_st // 4 bytes, 32 bits
{
unsigned short m_unZoneldx:10; // TzDb zone index

// 2710 = 1024 MAX
unsigned short m_unTzDbRelsLetter:5; // 26 release letters a-z
// 275 = 32 MAX
unsigned short m_unReservedl:1;
unsigned short m_unTzDbRelsYear:12; // UTC1970 zero based year number
// 1970 + 3465 = year 5435
// 2712 = 4096 MAX
unsigned short m_unReserved4:4;
} CCTCZonelD_st;

See Common Calendar Time Zone API
4.1.4.2 Current UTC Offset
m_ICurUTCOffset

4.1.4.3 Time-of-Day Count Mode

CBFTodCntMode_et instructs how the CBF binary representation is to be converted to the CCFC
YMDhms counting sequence representation. These are declared in CCTRateLib, CRateTable.h. Options
include:.

e TOD_LEAPSECOND_UTC _UTC - Leap-seconds introduced simultaneous with UTC on local
timescales, leap-second label 23:59:60, CCF TOD Count Mode char indicator "u" (utc)

e TOD_LEAPSECOND_UTC_NTP - Leap-seconds introduced simultaneous with UTC on local
timescales, leap-second label 59:59:59 (“freeze"), CCF TOD Count Mode char indicator "n" (ntp)

e TOD_LEAPSECOND_UTC POSIX - Leap-seconds introduced simultaneous with UTC on local
timescales, leap-second label 00:00:00 (“roll over and reset"), CCF TOD Count Mode char
indicator "p" (posix)

e TOD_LEAPSECOND_MIDNIGHT - Leap-seconds introduced at midnight on local timescales, leap-
second label 23:59:60. “Rolling leap-seconds”. CCF TOD Count Mode char indicator "m" (midnight)

e TOD_LEAPSECOND_ 24HOUR_DAY - 86400-second-days without leap-seconds, POSIX time_t.,
CCF TOD Count Mode char indicator "g" (Gregorian)

Page 7

e TOD_24HOUR_DAY_NOT_TOD - UTC accurate local date with time portion having no relation to
the date, a timer. 86400-second-days without leap-seconds, POSIX time_t., CCF TOD Count Mode
char indicator "t" (timer)

typedef enum CBFTodCntMode et

TOD_LEAPSECOND_NOT_SET, // not set or logic error (default)
TOD_LEAPSECOND_UTC _UTC, // Leap-seconds introduced

// simultaneous with UTC on

// local timescales

// leap-second label

// 23:59:60

// CCF char indicator "u" (utc)
TOD_LEAPSECOND_UTC_NTP, // Leap-seconds introduced

// simultaneous with UTC on

// local timescales

// leap-second label

// 23:59:59 ("'freeze')

// CCF char indicator "n" (ntp)
TOD_LEAPSECOND_UTC_POSIX, // Leap-seconds introduced

// simultaneous with UTC on

// local timescales

// leap-second label

// 00:00:00 ("roll over and reset')

// CCF char indicator "p" (posix)
TOD_LEAPSECOND_MIDNIGHT, // Leap-seconds introduced at

// midnight on local timescales

// (Rolling leap-seconds)

// CCF char indicator "m"™ (midnight)
TOD_24HOUR_DAY, // 86400-second-days of calendar

// leap-seconds unknown. unavailable

// or not applicable

// This is POSIX time_t

// seconds-since-UTC1970

// without leap-seconds

// CCF char indicator "g" (gregorian)
TOD_24HOUR_DAY_NOT_TOD // 86400-second-days of calendar date

// without leap-seconds

// accurate date

// inaccurate time-of-day

// time-of-day decoupled from date

// CCF char indicator "t (timer
} CBFTodCntMode_et;

See Common Calendar Local Timescales.
4.2 CBFC Construction
CCTDateTime_st structure is mandatory and the anchor of the binary image.

The state of the CCTDateTime_st::m_blsinterval flag indicates if the CBFC represents a time-point
(m_blsInterval == false) or a time interval (m_blsiInterval == true).

4.2.1 Time-point
If m_blsiInterval == false a CCTDateTime_st represents a time-point.

Used without the optional CBFCLocalDate_st extension, the values of a CCTDateTime_st represent a
time point within a 24 hour period (86400 seconds) with no reference to any date or other timescale. It
represents a zero-based count of time units from an origin marked as "zero". It is a timestamp of a simple
timer, like a "game clock" or "stop-watch".

Combined with the optional CBFCLocalDate_st extension the CBFC represents a leap-second accurate
local date and time. The CCTDateTime_st counter value represents time-of-day (24 hours plus one leap-

Page 8

second if applicable) on the calendar date indicated by the CBFCLocalDate_st member values. The
presence of CBFCLocalDate_st is indicated by the CCTDateTime_st:: m_bLocalDateExt flag.

4.2.1.1 UTC accurate local date and time-of-day

CCTDateTime_st — mandatory
CCTDateTime_st::m_blsInterval = false
CCTDateTime_st::m_eDecFracRate = CBFRate et enumeration
CCTCDecimalFrac32_st - decimal fraction extension if CCTDateTime_st::m_eDecFracRate > CLOCK 0
CCTDateTime_st::m_unSecsHigh16, m_ulSecsLow32 — seconds-since-UTC1970
CCTDateTime_st:: m_bLocalDateExt = true
CBFCLocalDate_st — local date extension
CBFCLocalDate_st m_IDecimalFrac32 —faction of second at CCTDateTime_st::m_eDecFracRate
CCTCLocalDate_st ::CCTCZonelD_st::m_unZoneldx = selected TzDb time zone index
CBFCLocalDate_st:: m_ICurUTCOffset = current UTC-offset (TzDb dstoff)
CBFCLocalDate_st::m_eTodCntMode = one of CBFTodCntMode_et enumerations:
e TOD_LEAPSECOND_UTC_UTC - Leap-seconds introduced simultaneous with UTC on local
timescales, leap-second label 23:59:60, CCF TOD Count Mode char indicator "u" (utc)
e TOD_LEAPSECOND_UTC_NTP - Leap-seconds introduced simultaneous with UTC on local
timescales, leap-second label 59:59:59 ("freeze"), CCF TOD Count Mode char indicator "n" (ntp)
e TOD_LEAPSECOND_UTC POSIX - Leap-seconds introduced simultaneous with UTC on local
timescales, leap-second label 00:00:00 ("roll over and reset"), CCF TOD Count Mode char
indicator "p" (posix)
e TOD_LEAPSECOND_MIDNIGHT - Leap-seconds introduced at midnight on local timescales, leap-
second label 23:59:60, CCF TOD Count Mode char indicator "m" (midnight)

The CCTC character representation has several delimited fields. For example, In New York, the second
before the November DST ‘fall back’ at CLOCK_7, 100-nanosecond, with
TOD_LEAPSECOND_UTC_UTC count mode:

CCctC call to set CCbfC binary:
CCctC->SetDateTime("'America/New_York', TOD LEAPSECOND_UTC_UTC,
1730613626, 123, CLOCK_7);

As CCcfC character format:
D2024-11-03T01:59:59.0000123U-04Zamerica/new_yorkVvV2024aMuX
// UTC 1730613626

4.2.1.2 UTC accurate local date with arbitrary time-of-day

CCTDateTime_st — mandatory

CCTDateTime_st::m_blsiInterval = false

CCTDateTime_st:: m_blLocalDateExt = true

CBFCLocalDate_st — local date extension

CCTCLocalDate_st ::CCTCZonelD_st::m_unZoneldx = selected TzDb time zone index
CBFCLocalDate_st:: m_ICurUTCOffset = current UTC-offset (TzDb dstoff)
CCTCLocalDate_st ::m_elLsTodCntMode = TOD_24HOUR_DAY_NOT_TOD

Time point with UTC accurate local date with time portion having no relation to the date. This supports
uses such timers during a date, such as game clocks or rocket launches (“T-10 and counting..”), where
the hms portion of the timestamp is a timer, not time-of-day.

4.2.1.3 Time-point less than 24 hours

CCTDateTime_st — mandatory
CCTDateTime_st::m_blsInterval == false

If the CCTDateTime_st seconds-since-UTC1970 is less than 24 hours (< 86400 seconds) the CCCT
timestamp represents an interval less than 86400 seconds.

The CCTC character representation is delimited with “I” (for Interval) followed by hmsd. For example,an
intervalof 86399.999 seconds at CLOCK 3, milliseconds:

CCctC call to set CCbfC binary:
CCctC->SetEvent(86399, 999, CLOCK_3);

Page 9

As CCcfC character format:
T23:59:59.999X // 0000086399.999 CLOCK_3

4.2.1.4 Time-point 24 hours or greater (Event)

CCTDateTime_st — mandatory
CCTDateTime_st::m_blsInterval == false

If the CCTDateTime_st seconds-since-UTC1970 is less than 24 hours (< 86400 seconds) the CCCT
timestamp represents a time-point less than 86400 seconds.

The CCTC character representation is delimited with “E” (for 24-hout Event) followed a 24-hour value,
followed by an “T” delimiter, followed by hmsd. For example, 2 24-hour periods and 86399.999 seconds
at CLOCK 3, milliseconds:

CCctC call to set CCbfC binary:
CCctC->SetEvent((86400 * 2) + 86399, 999, CLOCK_3);

As CCcfC character format:
E2T23:59:59.999X // 0000259199.999 CLOCK 3

4.2.2 Interval

If CCTDateTime_st::m_blsInterval == true the CBFC represents an interval, rather than a time-point.
4.2.2.1 Interval less than 24 hours

CCTDateTime_st — mandatory

CCTDateTime_st::m_blsInterval == true

If the CCTDateTime_st seconds-since-UTC1970 is less than 24 hours (< 86400 seconds) the CCCT
timestamp represents an interval less than 86400 seconds.

The CCTC character representation is delimited with “I” (for Interval) followed by hmsd, For example,
86399.999 seconds at CLOCK 3, milliseconds:

CCectC call to set CCbfC binary:
CCctC->SetInterval (86399, 999, CLOCK_3);

As CCcfC character format:
123:59:59.999X //0000086399.999 CLOCK_3

4.2.2.2 Interval 24 hours or greater (Period)

CCTDateTime_st — mandatory
CCTDateTime_st::m_blsinterval == true

If the CCTDateTime_st seconds-since-UTC1970 is equal or greater than 24 hours (>= 86400 seconds)
the CCCT timestamp represents an interval equal or greater than 86400 seconds.

The CCTC character representation is delimited with “P” (for 24-hout Period) followed a 24-hour period
value, followed by an “I” delimiter, followed by hmsd. For example, 2 24-hour periods and 86399.999
seconds at CLOCK _3, milliseconds:

CCctC call to set CCbfC binary:
CCctC->SetInterval ((86400 * 2) + 86399, 999, CLOCK_3);

As CCcfC character format:
P2123:59:59.999X //0000259199.999 CLOCK 3

Note intervals >= 86400 seconds are not accurate UTC date and time because leap-seconds are not
accounted for; intervals are made up of 24-hour (86400 second) periods, not UTC accurate days.

4.3 Geostamp

CCTC may include location, the geographical coordinates. This transforms a CCTC timestamp into a
GeoStamp. The Geostamp specification was developed in collaboration with Son Voba of Sync-n-Scale
to support "tractability provenance".

Page 10

A Geostamp consists of geographic coordinates and a CCTC timestamp. Geostamps are technically
accurate, making them suitable for general and legal purposes where time recording is used for tracking
and auditing and a wide range of spatial-temporal geographic information systems (4D GIS)
applications in machine learning, artificial intelligence, data analytics and blockchain distributed ledgers.

Like CCTC, Geostamps can be formed in either a binary or character format. The binary format supports
efficient machine interoperability while the character format is human readable making their meaning
accessible to those less familiar with the intricacies of timekeeping and geographic representations.

Coordinates are carried in the binary CBF CBFLocation_st structure and reflected in CCFC character
format in the Location Element field.

If user has requested to include location in the CCTC timestamp.
m_CCTCParams_st.m_bUserIncludeLocation == true

The presence of location data is signaled by:
m_CCTCLocalDate_st.m_CCTCZonelD_st.m_bCBFLocationExt == true.

CCTC supports two forms of location:

e The time zone default location as provided by TzDb zone.tab. Latitude and longitude of the
timezone's principal location in ISO 6709 sign-degrees-minutes-seconds format, Altitude is not
given by TzDb zone.tab.

e The Latitude, Longitude and Altitude as supplied by National Marine Electronics Association
(NMEA) NMEA 0183 GPGGA sentences. Latitude and longitude in degrees, minutes and decimal
fractions of minutes. Altitude in meters and decimal fractions.

If m_CCTCParams_st.m_CBFLocation_st.m_bSourcelsExtern == false the data is in TzDb zone.tab ISO
6709 form.
See CTzDataParse::GeoOp_stToCBFLocation_stUTIL()

If the application has called CCctC::SetLocation() the data is in NMEA GPGGA form and
m_CCTCParams_st.m_CBFLocation_st.m_bSourcelsExtern == true.

See CCctC::SetLocation()

See CTzDataParse::LatLgnAltToCBFLocation_stUTIL()

4.3.1 Geographic Coordinates

The CBFcLocation_st struct carries geographic coordinates.
typedef struct CBFLocation_st // 14 bytes

signed long m_i21Lat_uMin:z21; // micro-minutes -100000 to 100000 range
/7 [((2"21)/2)-1 = 1048575 MAX]

signed long m_i9Lat Deg:9; // degrees -90 to 90 range, negative is South
/7 [((2"9) 7/ 2) - 1 = 255 MAX]

signed long m_Padl:2;

signed long m_i21Lng _uMin:z21; // micro-minutes -100000 to 100000 range
/7 [((2"21)/2)-1 = 1048575 MAX]

signed long m_i19Lng _Deg:9; // degrees -180 to 180 range, negative is West
/7 [((2"9) 7/ 2) - 1 = 255 MAX]

signed long m_Pad2:2;

signed long m_i25A1t_cm:25; // signed centimeters range [((27"25)/2)*-1 MIN
// -16777216, ((2725)/2)-1 MAX 16777215

signed long m_i7Lng_Min:7; // minutes 0 to 60 range
/7 [(2~7) /7 2) - 1 = 63 MAX]

unsigned char m_i7Lat_Min:7; // minutes 0 to 60 range
/7 [(2~7) /7 2) - 1 = 63 MAX]
unsigned char m_bSourcelskExtern:1; // flag is external location, otherwise is
// TzDb zone.tab location
unsigned char m blsvalidLat:1; // flag Latitude value valid
unsigned char m blsvalidLng:1; // flag Longitude value valid
unsigned char m_blsvalidAlt:1; // flag Altitude value valid
unsigned char m_Pad3:5;

Page 11

} CBFLocation_st;

See TzDatabaseApi.h, CBFCLocation_st
See CCctC.h, CCctC.cpp class CCctC
See CCbfC.h, CCbfC.cpp class CChcC

4.4 Assembly Order

A CBFC shall be formed with the mandatory CCTDateTime_st structure with optional components
concatenated in the following order:

e To form a time-point timestamp < 86400 seconds:
CCTDateTime_st - mandatory and CCTDateTime_st::m_blslInterval = false

e To form a time-point timestamp >= 86400 seconds:
CCTDateTime_st - mandatory and CCTDateTime_st::m _blslInterval

false

e Toform a UTC accurate local time-point timestamp:
CCTDateTime_st - mandatory and CCTDateTime_st::m blsinterval = false
CBFCLocalDate_st - local date extension

Interval and LocalDate are exclusive

e To form a interval < 86400 seconds:

CCTDateTime - mandatory and CCTDateTime_st::m _blslInterval true

e To form an interval >= 86400 seconds:
CCTDateTime - mandatory and CCTDateTime_st::m _blslnterval = true

See CCcfC::SetCcfCAssembleStrings(Q)

4.5 RIFF Wrapper

CCctC::AssembleCbfC() generates a raw CCbfC binary image. These are intended for cases where the
timestamps are known within the context of use. Some applications may need or prefer to identify those
raw images. The CCTC RIFF wrapper (class CRiff _CCct) provides means to wrap the raw timestamp in a
RIFF four-cc format.

The four-cc of the CBFC RIFF shall be " CCTC"
The four-cc of each CBFC chunk shall be " cctc”
See CCTRIffCCct.h

#define FOURCC_CCTC "'CCTC"™// RIFF CCTC header
#define FOURCC cctc "cctc"// RIFF CCTC chunk

See CCTRIffCCct.h and CCTRIffCCct.cpp

One or more CCTCs may be contained in a CCTC RIFF Wrapper.
First, set the output/input path for the RIFF wrapper file:

CCctC: :SetCRiff_CCctPath(sRiffCbfPath);

A single CBFC can be assembled and written to a RIFF wrapper by:
CCctC: :AssembleAndWriteSingleltemCRiff_CCct_CCct();
A series of CBFCs can be written to a RIFF wrapper by:

1) Create RIFF:
CCctC: :CreateCRiff_CCctAppendLIST()

2) For each CBFC
CCctC: :AssembleAndAppendToCRiff_CCct()

3) Complete and close
CCctC: :WriteListAndCompleteCRiff _CCct()

Page 12

The CBFC RIFF Wrapper can be opened and read, populating one or more CBFC timestamps by:
CCctC: :ReadCRiff_CCct()

5 Common Calendar Conventional Character Format (CCFC)

Common Calendar Conventional Character Format (CCFC) specifies a character based machine-
readable format of date and time in a YMDhms form to impart familiar meaning to human users. CCF
reflects equivalent data of the CBFC binary format providing complete symmetrical conversion between
the two.

CCEFC construction does not rely on external metadata, only the values contained in the corresponding
binary CBFC. CCFC contains sufficient information to populate a binary CBFC without reference to any
external information.

A CCFC, like its corresponding CBFC format, can have one of five meanings:

time point with UTC accurate local date and time-of-day

time point with UTC accurate local date with time portion having no relation to the date
time point less than 24 hours with no relation to date

time point 24 hours or greater with no relation to date

time interval less than 24 hours (< 86400 seconds)

time interval 24 hours or greater (>= 86400 seconds)

In the case of representation of a time-point of UTC accurate local date and time-of-day a CCFC and its
corresponding CBFC shall contain the local date, time-of-day, and local metadata as known to the
emitting system when generated in accordance with the rules and guidelines set out in Common
Calendar Local Timescales.

Examples of these configurations are shown in Annex C - Example Listing from CCT Reference
Implementation. This listing is generated by the CCT reference implementations. See
CCTDemoConsole.cpp, CCTDemoTestsCCctC.cpp,
TestSelectedCCctCConfigurationsAndShowCbfCValues().

5.1 I1SO 8601 Variation

The CCF format is based on the guidelines set out in ISO 8601 with important variations. The 8601
scheme is augmented in several ways including:

e Formatting of hms shall use the full hh:mm:ss form

o |If date is given formatting of date and time shall use the full YYYY-MM-DDThh:mm:ss form and
shall include all required applicable metadata elements.

Clock rate is added.

TzDb time zone identity is added

TzDb release (version) is added

The character "Z" is used to delimit the time zone identification data field, replacing the 1SO 8601
use of “Z” for "Zulu"

CCFC does not support any form of partial representation of local date and time such as date only,
"YYYY-DD-MM", or date and time only, "YYYY-MM-DDThh:mm:ss" because these are ambiguous
without accompanying metadata. If date is given, CCFC and CBFC support only complete and
deterministic representation of local date and time including the required local time metadata. Other
representations are outside the scope of CBFC and CCFC.

5.2 Character Set

CCFC shall be encoded using the ASCII character set excluding control characters and white space as
detailed in Annex A - CCFC Character Set.

abcdefghi jkImnopqgrstuvwxyz
ABCDEFGH I JKLMNOPQRSTUVWXYZ
0123456789

ST OQ*+, -/ <=>?0[1"_"{I}~

Page 13

5.3 Hard Terminator
The CCFC string shall be terminated with an upper case "X" in all cases.
5.4 Data Field Elements

A CCFC is a variable length string and its total length depends on the included optional elements and
their contents. Some elements are fixed length, others variable length.

CCFC shall be encoded as several optional data field elements delimited by a single designated upper-
case letter and terminated with "X" to facilitate parsing. The length of variable length elements is bounded
by its delimiting character and the next delimiting character or terminator. The syntax is variable length
with no white space.

CCFC delimiter characters and encoding characters are explicitly defined in CCTLib/CCFC.h. The
required elements and order of assembly are described in section 4.5 Assembly and Order. Each
element is described in sections below.

Delimiting | Element Example fragment(s)
Character
T Time: T23:59:59.999999999

e singly - time point < 86400s
e with Date and TOD_LEAPSECOND_MIDNIGHT
or TOD_LEAPSECOND_UTC_UTC
or TOD_LEAPSECOND_UTC_NTP
or TOD_LEAPSECOND_UTC_POSIX
- time-of-day of UTC accurate local date
e with Date and TOD_24HOUR_DAY_NOT_TOD
Accurate local date with time portion having no
relation to the date time-of-day
E Event with Time - time point >= 86400s E123T23:59:59.999999999
1 Interval: 123:59:59.999999999

e singly - time Interval < 86400s
e with Period - time interval >= 86400s

P Period with Interval - time interval >= 86400s P123123:59:59.999999999

D Date D2016-02-22

U UTC Offset U-5, U+5, U+02:30:17,
U+3w01+02

z (Z2)one — TzDb time zone identity Zamerica/new_york

\Y TzDb release version V2021a

M Time-of-day Count Mode: Mu

X Hard terminator X

5.4.1 Time Element
Encodes a timer, an interval or, in combination with a Date Element, time-of-day.
The corresponding CBFC component is CCTDateTime_st.

The time element represents a time-point or interval in the familiar hours:minutes:seconds form, that is;
60 seconds = 1 minute, 60 minutes = 1 hour, and 24 hours = one 24 hour (86400 second) period.

If the time element appears alone, it shall represent one of:

If delimited by T —
A time-point ((T)ime) less than 24 hours (< 86400 seconds) with no relation to date. The corresponding
CBFC CTDateTime_st::m_blsInterval member shall be set to false.

If delimited by | —
An interval ((I)nterval) less than 24 hours (< 86400 seconds)
The corresponding CBFC CTDateTime_st::m_blsInterval member shall be set to true.

If the time element appears in combination with a 24-hour Period Element it shall represent one of:
If delimited by Eand T -

Page 14

A time-point ((E)vent) 24 hours or greater (>= 86400 seconds)with no relation to date. The corresponding
CBFC CTDateTime_st::m_blsInterval member shall be set to false.

If delimited by P and | -
An interval ((P)eriod) 24 hours or greater (>= 86400 seconds). The corresponding CBFC
CTDateTime_st::m_blsInterval member shall be set to true.

If the time element appears in combination with the date element ("DYYYY-MM-DD") together with its
required metadata elements) it shall represent the time-of-day portion of a complete UTC accurate local
date and time. See Date Element.

The first eight characters of the time element shall be fixed length containing two-digit values of hours,
minutes, and seconds, separated by colons, for example "00:00:00".

If a period character (“.”) follows the hh:mm:ss field some number of numeric characters (digits) shall
follow up to the next element delimiter. The number of digits indicates the decimal fraction of seconds
resolution.

The corresponding value of a binary CBFC m_CCTDateTime_st::m_eDecFracRate member shall be set
as indicated in the following table:

Digits CBFC rate
CBFCRate_et
None CLOCK 0 1/1 second
1 CLOCK 1 1/10 tenths of second
2 CLOCK 2 1/100 hundredths of second
3 CLOCK 3 1/1000 millisecond
4 CLOCK 4 1/10000 10ths of millisecond, 100 microsecond
5 CLOCK 5 1/100000 100ths of millisecond, 1000 microsecond
6 CLOCK 6 1/1000000 microsecond
7 CLOCK 7 1/10000000 10ths of microsecond, 100 nanosecond
8 CLOCK 8 1/100000000 100ths of microsecond, 1000 nanosecond
9 CLOCK 9 1/1000000000 nanosecond

For example, 3 digits indicates milliseconds; “12:34:56.999". The corresponding CBFC
m_CCTDateTime_st::m_eDecFracRate member is CLOCK_3.

5.4.1.1 UTC accurate local date and time-of-day

If the Time Element appears in combination with the Date Element and the TOD Count Mode is one of
TOD_LEAPSECOND_MIDNIGHT, TOD_LEAPSECOND_UTC_UTC, TOD_LEAPSECOND_UTC_NTP or
TOD_LEAPSECOND_UTC_POSIX the Time Element shall represent the time-of-day portion of a
complete UTC accurate local date and time-of-day time-point including DST and.or UTC-offset Shift
metadata if applicable. See Date Element and DST Element.

The corresponding CBFC binary data structures are CCTDateTime_st and CBFCLocalDate_st.

Delimiters | Description CBFC member variable state
Dand T | UTC accurate local date and time-of-day time | CCTDateTime_st::m_blsinterval
plus point == false

applicable CBFCLocalDate_st::m_eTodCntMode
metadata == TOD_LEAPSECOND_UTC_UTC
delimiters or TOD_LEAPSECOND_UTC_NTP

or TOD_LEAPSECOND_UTC_POSIX

Or TOD_LEAPSECOND_MIDNIGHT

Example:
D2015-06-30T19:59:60U-04Zamer ica/new_yorkV2024aMuX

5.4.1.2 UTC accurate local date and time having no relation to date

If the time element appears in combination with the Date Element and the TOD Count Mode is
TOD_24HOUR_DAY_NOT_TOD, character Mt, it shall represent a time having no relation to the UTC
accurate local date. See Date Element.

Page 15

The corresponding CBFC binary data structures are CCTDateTime_st and CBFCLocalDate_st.

Delimiters | Description CBFC member variable state
Dand T | Time-of-day unrelated to UTC date CCTDateTime_st::m_blslnterval
plus == false
applicable CBFCLocalDate_st::m_eTodCntMode
metadata == TOD_24HOUR_DAY_NOT_TOD
delimiters
Example:

D2015-06-30T12:00:00U-04Zamer ica/new_yorkV2024aMuX
5.4.1.3 Time point less than 86400s

If the Time Element appears alone delimited by uppercase "T" it shall represent a time point less than
86400s.

Delimiter | Description CBFC member variable state
T Time point ((T)ime) less than 24 hours (< 86400 CCTDateTime_st::m_blsInterval
seconds) with no relation to date == false
Example:
T23:59:59X - time-point (Time) in seconds

5.4.1.4 Time point equal or greater than 86400s

If the Time Element appears in combination with an Event Element it shall represent a time point greater
than or equal to 86400s and be delimited by uppercase "T". See Event Element.

Delimiters | Description CBFC member variable state
Eand T | Time point ((E)vent) 24 hours or greater (>= CCTDateTime_st::m_blsInterval
86400 seconds) with no relation to date == false
Example:

E123T23:59:59X - time-point (Event) >= 24 hours in seconds
5.4.1.5 Interval less than 86400s

If the Time Element appears alone delimited by uppercase "I" it shall represent an interval less than

86400s.
Delimiter | Description CBFC member variable state
1 Interval ((I)nterval) less than 24 hours (< 86400 CCTDateTime_st::m_blsinterval
seconds) == true.
Example:

123:59:59.999999X - interval (Interval) < 24 hours in microseconds
5.4.1.6 Interval equal or greater than 86400s

If the Time Element appears in combination with an Period Element it shall represent an interval equal or
greater than 86400s and be delimited by uppercase "I". See Period Element.

Delimiters | Description CBFC member variable state
Pand 1 | Interval ((P)eriod) 24 hours or greater (>= 86400 | CCTDateTime_st::m_blslinterval
seconds) == true.
Example:

P123123:59:59u999999X - interval (Period) >= 24 hours in microseconds

Examples summary:

T23:59:59X - time-point (Time) in seconds
T23:59:59.999X - time-point (Time) in milliseconds
T23:59:59.999999999X - time-point (Time) in nanoseconds
123:59:59X - interval (Interval) < 24 hours in seconds
123:59:59.999999X - interval (Interval) < 24 hours in microseconds
E1T23:59:59X - time-point (Event) >= 24 hours in seconds

Page 16

E12T23:59:59.999X
E123T23:59:59.999999999X

time-point (Event) >= 24 hours in milliseconds
time-point (Event) >= 24 hours in nanoseconds
P1123:59:59X interval (Period) >= 24 hours in seconds
P2123:59:59.999999X interval (Period) >= 24 hours in microseconds
D2015-06-30T19:59:60U-04Zamerica/new_yorkV2024aMuX - Local Date and time

See CCTC.h, CCTDateTime_st
CBFCRATE_et
See CCcfC.cpp, CCcfC::SetTimeFromCCbfC()
CCcfC::ParseTimeSetCCbfC()

5.5 Event Element

Encodes a 24 hour period (86400 seconds) count value. If given, shall be used in combination with a
Time Element to represent a time interval equal to or greater than 86400 seconds. See Time Element.

The term "24 hour period" is used in this context to avoid the word "day" because only UTC, with its
occasional 86401 second leap-second days, represents accurate calendar dates. An Event Element
indicates a count of fixed-length 86400 second periods, not UTC days.

Delimiters | Description CBFC member variable state
Eand T | Time point ((E)vent) 24 hours or greater (>= CCTDateTime_st::m_blsinterval
86400 seconds) with no relation to date == false

Examples

E1T23:59:59X - time-point (Event) >= 24 hours in seconds
E12T23:59:59.999X - time-point (Event) >= 24 hours in milliseconds
E123T23:59:59.999999999X - time-point (Event) >= 24 hours in nanoseconds

See CBFC.h, CBFC24HourPeriod_st
CBFC24HourPeriod_st::m_ul24HourPeriods
See CCct.h
CCct: :SetlIntervalFromSecondsFrac_st()
CCct: :Set24HourTimepointFromSecondsFrac_st
See CCcf.cpp, CCcf::SetCcfFromCCbf()
CCcf::SetCcfFromCCbf_Interval()
CCcf::SetCcfFromCCbf_Timepoint()
CCcf::ParselntervalSetCCbf()
CCcf::Parse24HourlntervalSetCCbf()
CCcf::Parse24HourEventSetCCbf()

5.6 Period Element

Encodes a 24 hour interval (86400 seconds) value. If given, shall be used in combination with an Interval
Element to represent a interval equal to or greater than 86400 seconds. See Interval Element.

Delimiters | Description CBFC member variable state
Pand!| | Interval ((P)eriod) 24 hours or greater (>= 86400 | CCTDateTime_st::m_blsInterval
seconds) == true.
Examples:
P1T23:59:59X - interval (Period) >= 24 hours in seconds
P2T23:59:59.999999X - interval (Period) >= 24 hours in microseconds

See CBFC.h, CBFC24HourPeriod_st
CBFC24HourPeriod_st::m_ul24HourPeriods
See CCct.h
CCct::SetintervalFromSecondsFrac_st()
CCct: :Set24HourTimepointFromSecondsFrac_st
See CCcf.cpp, CCcf::SetCcfFromCChbf()
CCcf::SetCcfFromCCbf_Interval()
CCcf::SetCcfFromCCbf_Timepoint()
CCcf::ParselntervalSetCCbf()

Page 17

CCcf::Parse24HourlIntervalSetCCbf()
CCcf::Parse24HourEventSetCCbf()

5.7 Date Element

Encodes local date.

The corresponding CBFC component is CBFCLocalDate_st.

A CBFC with date shall include the CBFCLocalDate_st structure, indicated by
CCTDateTime_st::m_bLocalDateExt == true.

The Date Element shall be fixed length 11 characters including delimiter in the form DYYYY-MM-DD, as
shown in the following table.

Delimiter Year (YYYY) Dash Month (MM) Dash Day (DD)
D 4 digit year (YYYY) - 2 digit month - 2 digit day of month (DD) with
(MM) with leading leading zeros
zeros

Example fragment:
D1972-01-01

If the optional YYYY-MM-DD Date Element is present it shall represent the complete local calendar date
and time-of-day together with sufficient metadata to fully describe local data and time. The optional DST
Element shall add Daylight Saving parameters if applicable and the UTC-Offset Shift Element shall add
UTC-Offset shift parameters if applicable.

If date element is given it shall be accompanied by:
T Time Element (time-of-day)

U UTC Offset Element

Z Zone Element

V TzDb Version Element

M TOD Count Mode Element

A date element together with its required metadata elements describes a time-point, indicated by CBFC
CCTDateTime_st::m_blsinterval == false.

The meaning of the timestamp and the YMDhms sequence shall be governed by the TOD Count Mode
CBFTodCntMode_et enumerated values of CBFCLocalDate_st:: m_eTodCntMode. See TOD Count
Mode Element.

Construction of CCFC YMDhms from CBFC binary data shall employ the algorithms described by the
YMDhms API The YMDhms values will depend on CBFCLocalDate_st::m_eTodCntMode.

In the case of UTC accurate data and time, where CBFCLocalDate_st::m_eTodCntMode is one of
TOD_LEAPSECOND_UTC _UTC, TOD_LEAPSECOND_UTC _NTP, TOD_LEAPSECOND _UTC POSIX
or TOD_LEAPSECOND_MIDNIGHT, positive leap-second days are 86401 seconds, the last hour of the
day (23) is 3601 seconds and its last minute 61 seconds.

CCFC delimiter characters and encoding characters are explicitly defined in CCTLib/CCFC.h.

The details of the CBFC to CCFC conversion are implemented in:

CCcfC.cpp, CCcfC::SetCcfCFromCCbfC ()
CCcfC::SetCcfCFromCCbfC_TOD_LEAPSECOND()
CCcfC::SetCcfCFromCCbfC_TOD_24HOUR_DAY()

Parsing of a CCFC string and populating a CBF binary is shown in:
CCcfC.cpp, CCcfC::ParseDateSetChfC()

Examples:

D1972-06-30T19:59:60U-04Zamerica/new_yorkvV2024aMuX
- 1972-06-30T19:59:60 date and time-of-day
- U-04 - UTC-offset
- Zamerica/new_york - time zone

Page 18

- V2024a - Tz Database version
- Mu - TOD Count Mode TOD_LEAPSECOND_UTC_UTC
- X - terminator

D1972-07-01T00:59:60U+01Zeurope/berlinv2024aMuX
- 1972-07-01T00:59:60 date and time-of-day
- U+01 - UTC offset
- Zeurope/berlin - time zone
- V2024a - Tz Database version
- Mu - TOD Count Mode TOD_LEAPSECOND _UTC _UTC
- X - terminator

5.8 UTC Offset Element

Encodes the current local time zone offset from UTC in seconds resolution as a variable length +-
hh:mm:ss representation.

The corresponding CBFC member is CCTCLocalDate_st::m_ICurUTCOffset.
(This is the same value given by TzDb and POSIX as tm_gmtoff.)

The UTC Offset element shall be delimited with uppercase “U”, for (U)TC Offset.

Shall be followed with the “+” or “-* UTC offset sign

Shall be followed by variable length hh, mm, or ss:

If even hour, 2 chars, 2 digits of hours

If even minute, 5 chars, 2 digits of hours, colon, 2 digits of minutes.

If seconds, 7 chars, 2 digits of hours, colon, 2 digits of minutes, colon, 2 digits of seconds

A zero UTC offset shall be preceded by the “+” sign. “-00” is reserved as an error indicator.

Example fragments:
U+00

u+02

U+05:45
U+00:12:12

U-06

U-03:30

U-04:56:02

Example:
D2015-06-30T19:59:60U-04Zamer ica/new_yorkV2024aMuX

See CCTC.h, CCTCLocalDate_st::m_ICurUTCOffset

See CCcf.cpp, CCcfC::SetUTCOffsetAndZoneFromCCbfC()
CCcfC::ParseUTCOffsetSetCCbfC()

5.9 Time Zone Element

Encodes the TzDb time zone identifier.

The corresponding CBF member is CCTCLocalDate_st::m_CCTCZonelD_st::m_unZoneldx..

The Time Zone Element shall be delimited with Z ((Z)one) followed by a variable length string of lower-
case TzDb time zone identifiers including any forward slash "/". For example, "America/New_York"
becomes "america/new_york".

Delimiter Time Zone name
Y4 variable length string as lower-case of TzDb time zone identifier

Example fragments:
Zetc/utc

Zamerica/new_york
Zamerica/los_angles
Zeurope/london

Example:

Page 19

D2015-06-30T19:59:60U-04Zamerica/new_yorkvV2024aMuX
CCFC delimiter characters and encoding characters are explicitly defined in CCTLib/CCFC.h.

See CCTC.h, CBFLocalDate_st::m_TZDTimeZone_st

See CCcf.cpp,
CCcfC::SetUTCOffsetAndZoneFromCCbf()
CCcfC::ParseZoneSetCCbf()

See Common Calendar Time Zone API

5.10 IANA Time Zone Database Version Element
Encodes the IANA Time Zone Database source files release year and release letter.

The corresponding CBFC members are
CCTCLocalDate_st::m_CCTCZonelD_st::m_unTzDataReleaseYear
CCTCLocalDate_st::m_CCTCZonelD_st::m_unTzDataReleaseLetter

The IANA Time Zone Database Version Element shall be delimited with V ((V)ersion) followed by a four-
digit year and single character release letter.

Delimiter | IANA tzdata files release year IANA tzdata files release letter

\ four digit year (YYYY) one lower-case character
Example fragments:
V2021a
Vv2022d
Example:

D2015-06-30T19:59:60U-04Zamer ica/new_yorkV2024aMuX
CCFC delimiter characters and encoding characters are explicitly defined in CCTLib/CCFC.h.

See CCTC.h, CBFLocalDate_st::m_TZDTimeZone_st
See CCcfC.cpp, CCcfC::SetUTCOffsetAndZoneFromCCbf()
CCcfC::ParseTzVersionSetCCbf()

5.11TOD Count Mode Element
Encodes the TOD Count Mode value.

TOD Count Mode indicates the relation between the DYYYY-MM-DD and hh:mm:ss portions of the CCFC
and the resulting sequence of YMDhms representation.

Required if, and applicable only if, the Date Element "D" is given.
The corresponding CBFC member is CBFCLocalDate_st::m_eTodCntMode.

The TOD Count Mode Element shall be a fixed length 2-character string including the M (TOD (M)ode)
delimiter and a single lower-case encoding character as show below.

Delimiter | TOD Count Mode indicator

M one character encoding as shown in the following table

TOD Count Mode shall be indicated by a single lower-case character as shown in the following table:

Character | TOD Count Mode Description
Encoding | CBFTodCountMode et
u TOD_LEAPSECOND_UTC _UTC Leap-seconds introduced simultaneous with UTC

on local timescales.

Leap-second label 23:59:60 (UTC specification)

n TOD_LEAPSECOND_UTC_NTP Leap-seconds introduced simultaneous with UTC
on local timescales.

Leap-second label 59:59:59 ("freeze")

p TOD_LEAPSECOND_UTC POSIX Leap-seconds introduced simultaneous with UTC
on local timescales.

Leap-second label 00:00:00 ("roll over and reset")

Page 20

m TOD_LEAPSECOND_MIDNIGHT Leap-seconds introduced at midnight on local
timescales (Rolling leap-second)
g TOD_24HOUR_DAY_DATE 86400-second-days of calendar

(leap-seconds unknown or unavailable)

t

TOD_24HOUR_DAY_NOT_TOD

Time has no relation to date or time-of-day

Example fragments:

Mu (TOD_LEAPSECOND_UTC_UTC)

Mn (TOD_LEAPSECOND_UTC_NTP)

Mp (TOD_LEAPSECOND_UTC_POSIX)
Mm (TOD_LEAPSECOND_MIDNIGHT)

Mg (TOD_24HOUR_DAY_DATE)

Mt (TOD_24HOUR_DAY_NOT_TOD)

Example:
D2015-06-30T19:59:60U-04Zamerica/new_yorkVvV2024aMuX

CCFC delimiter characters and encoding characters are explicitly defined in CCTLib/CCFC.h.

See CRateTable.h, CBFTodCntMode_et
See CCTC.h, CBFCLocalDate_st::m_eTodCntMode
See CCct.cpp, CCcfC::SetCcfCFromCCbfC()
CCcfC::ParseTODModeSetCCbf()

5.12 Assembly and Order
A CCFC string shall begin with one of D (Date), T (Time), E (Event), | (Interval), or P (Period).

Required elements and order of presentation for each of the supported meanings are specified in
sections below.

5.12.1 UTC accurate local date and time-of-day

To represent a UTC accurate local date and time time point a CCFC shall include elements in the order
shown in the following table:

Order | Delimiter | Element
1 D Date required
2 T Time-of-day required
3 U UTC offset required
4 A Zone (time zone) required
5 \ Version of TzDb release required
6 M TOD Count Mode shall be required
u TOD_LEAPSECOND_UTC_UTC or
n TOD_LEAPSECOND_UTC_NTP or
p TOD_LEAPSECOND_UTC_POSIX or
g TOD_LEAPSECOND_MIDNIGHT
7 X terminator required
E Event (24 hour period) excluded
I Interval (24 hour period) excluded
P Period (24 hour period) excluded

DTUZAVMX required

EIP

excluded

Corresponding CBF variable states
CCTDateTime_st::m blslnterval =
CCTDateTime_st::m_bLocalDateExt
CBFCLocalDate_st::m_eTodCntMode

TOD_LEAPSECOND_UTC_UTC or
TOD_LEAPSECOND_UTC_NTP or
TOD_LEAPSECOND_UTC_POSIX or
TOD_LEAPSECOND_MIDNIGHT

false

true

Page 21

Example:
D2015-06-30T19:59:60U-04Zamerica/new_yorkV2024aMuX

See Common Calendar Local Timescales, 4.2 Time-of-day (TOD) Count Mode and leap-second
Introduction.

5.12.2 UTC accurate local date and time with no relation to the date

To represent a UTC accurate local date and a time with no relation to the date a CCFC shall include
elements in the order shown in the following table:

Order | Delimiter | Element

1 D Date required

2 T Time-of-day required

3 U UTC offset required

4 Z Zone (time zone) required

5 \Y Version of TzDb release required

6 M TOD Count Mode shall be required

t TOD_24HOUR_DAY_NOT_TOD

7 X terminator required

E Event (24 hour period) excluded

1 Interval (24 hour period) excluded

P Period (24 hour period) excluded
DTUZVMX required
SEIP excluded

Corresponding CBF variable states
CCTDateTime_st::m_blslnterval == false
CCTDateTime_st::m_bLocalDateExt == true
CBFCLocalDate_st::m eTodCntMode == TOD_24HOUR_DAY_NOT_TOD

Example:
D2015-06-30T19:59:60U-04Zamerica/new_yorkV2024aMtX

See Common Calendar Local Timescales, 4.2 Time-of-day (TOD) Count Mode
5.13Time point less than 86400s

To represent a time point less than 24 hours (< 86400s) a CCFC shall include elements in the order
shown in the following table:

Order | Delimiter | Element
1 T Time required
2 X terminator required
all others excluded
T required

DEIUZVM excluded
Indicated time shall be less than 86400 seconds.

Corresponding CBF variable states
CCTDateTime_st::m _blslnterval == false
CCTDateTime_st::m_bLocalDateExt == false

Example:
T23:59:59X

5.14Time point equal or greater than 86400s

To represent a time point 24 hours or greater (>= 86400s) a CCFC shall include elements in the order
shown in the following table:

Order | Delimiter | Element
1 E Event
2 T Time required

Page 22

3 X terminator required
all others excluded
Eand T required
DIUZVM excluded
Corresponding CBF variable states
CCTDateTime_st::m_blslnterval == false

CCTDateTime_st::m_bLocalDateExt == false

Example:
E1T23:59:59X

5.15 Interval less than 86400s

To represent an interval less than 24 hours (< 86400s) a CCFC shall include elements in the order shown
in the following table:

Order | Delimiter | Element
1 I Time required
2 X terminator required
all others excluded
T required
DEPUZVM excluded

Indicated interval shall be less than 86400 seconds.

Corresponding CBF variable states
CCTDateTime_st::m_blslnterval == true
CCTDateTime_st::m_bLocalDateExt == false

Example:
123:59:59X

5.15.1 Interval equal or greater than 86400s

To represent an interval 24 hours or greater (>= 86400s) a CCFC shall include elements in the order
shown in the following table:

Order | Delimiter | Element
1 P Period required
2 I Interval required
3 X terminator required
all others excluded
Pand T required
DEIUZVM excluded

Corresponding CBF variable states
CCTDateTime_st::m_blslnterval == true
CCTDateTime_st::m blLocalDateExt == false

Example:
P1123:59:59X

5.16 Geostamp

CCTC may include location, the geographical coordinates. This transforms a CCTC timestamp into a
GeoStamp.

The corresponding CBFC component is CCbfC::m_CBFLocation_st. as declared in TzDatabaseApi.h,
CBFLocation_st. The presence of location data is signaled by:
m_CCTCLocalDate_st.m_CCTCZonelD_st.m_bCBFLocationExt == true

CCTC supports two forms of location:

If m_CCTCParams_st.m_CBFLocation_st.m_bSourcelsExtern == false the data is in time zone's principal
location in ISO 6709 form as given by TzDb zone.tab. The character formatting shall be:

Page 23

Latitude and longitude as sign-degrees-minutes-seconds format, either +DDMMA+DDDMM or
+DDMMSSA+DDDMMSS.

Latitude is preceded by a sign character.
A plus sign (+) denotes northern hemisphere or the equator.
A minus sign (-) denotes southern hemisphere.

Longitude is preceded by a sign character.
A plus sign (+) denotes East or the prime meridian.
A minus sign (-) denotes West.

Altitude is not given by TzDb zone.tab.

If the application has called CCctC::SetLocation() the data is in NMEA GPGGA form and
m_CCTCParams_st.m_CBFLocation_st.m_bSourcelsExtern == true.

2 - The coordinates as supplied by NMEA 0183 GPGGA sentences. Latitude and longitude in degrees,
minutes and decimal fractions of minutes.

Latitude is preceded by a sign character.
A plus sign (+) denotes northern hemisphere or the equator.
A minus sign (-) denotes southern hemisphere.

Longitude is preceded by a sign character.
A plus sign (+) denotes East or the prime meridian.
A minus sign (-) denotes West.

5.16.1 Location Element
Encodes geographic coordinates.

CCTC carries coordinates in the form specified by National Marine Electronics Association (NMEA),
NMEA 0183 Interface Standard, GPGGA., GGA Global Positioning System Fix Data. Time, Position and
fix related data for a GPS receiver. The NMEA data is translated into the CBFLocation_st structure in the
CBFC binary format. The CBFC data is reflected in the CCFC character format in the Location Element
field.

The Location Element shall be a variable length string delimited with upper-case "C" ((C)oordinates)
followed by appropriate sub-fields

Delimiter Sub-fields
External Latitude Longitude Altitude
C external degrees, degrees, meters,
source or minutes, minutes, centimeters
tzdb defaults | micro-minutes | micro-minutes

CCTC supports coordinates from two sources, either input from external source such as GPS, or from
TzDb time zone default coordinates as given in tzdb zone.tab.

if external source a lower-case "e" ((e)xternal) shall be appended.
if not external source a lower-case "z" ((z)one) shall be appended.

The latitude sub-field shall be delimited by lower-case "t". (la(t)itude) followed by "+" or "-", 2 digits of

degrees, 2 digits of seconds, a "." (period) separator, and 6 digits microminutes.

The longitude sub-field shall be delimited by lower-case "g". (lon(g)itude) followed by "+" or "-", 2 digits of

degrees, 2 digits of seconds, a "." (period) separator, and 6 digits microminutes.

The altitude sub-field shall be delimited by lower-case "a". ((a)titude) followed by "+" or "-", 1-n meters,
(period) separator, and 6 digits centimeters.

Corresponding CBFC member CBFLocation_st

See TzDatabaseAPI.h, CBFLocation_st

See CCctC.h, CCctC.cpp class CCctC

int CCctC::SetLocation(char* psLatitude, char* psLongitude, char* psAltitude);

Example fragments:
As TzDb zone.tab:
Czt+4042519g-0740023

Page 24

As NMEA 0183 GPGGA:
Cet+4042.850009-00740.38333a123.45

Examples:
As TzDb zone.tab:
D2024-11-03T01:59:59U-04Zamerica/new_yorkV2024aMuCzt+404251g-0740023X

As NMEA 0183 GPGGA:
D2024-11-03T01:59:59U-04Zamer ica/new_yorkV2024aMuCet+4042 .85000g-00740.38333a123.45X

6 Common Calendar Conventional API

Common Calendar Conventional API defines a set of commands to set, get, and manipulate CCTC binary
and character formats. These are declared and implemented in class CCctC. See CCctC.h and
CCctC.cpp.

A brief sample of methods are illustrated below.
CCctC::SetDateTime(SecsFrac_st* pSecsFrac_st);
CCctC::SetYMDhmsd(int iYYYY, int iMM, int iDD, int ihh, int imm, int iss, uint64_t ui64dd);

CCctC::GetSecsFrac(SecsFrac_st* pSecsFrac_st);

Page 25

Annex A - CCT Standard Rates

CCT standard rates are enumerated in CCTRateLib, CRateTable.h

typedef enum CBFRate_et

CLOCK_UNKNOWN =0,

CLOCK 0 ,
CLOCK_1 ,
CLOCK 2 ,
CLOCK_3 ,
CLOCK 4 ,
CLOCK 5 ,
CLOCK 6 ,
CLOCK_7 ,
CLOCK 8 ,
CLOCK 9 ,
CLOCK 10 ,
CLOCK_11 ,
CLOCK 12 ,
// CLOCK_15
// CLOCK_18
// CLOCK_21
// CLOCK_24
// CLOCK_44
// room for

// 1/1 second

// 1/10 tenths of second

// 1/100 hundredths of second

// 1/1000 millisecond

// 1/10000 10ths of millisecond, 100 microsecond

// 1/100000 100ths of millisecond, 1000 microsecond

// 171000000 microsecond

// 1/10000000 10ths of microsecond, 100 nanosecond

// 1/100000000 100ths of microsecond, 1000 nanoseconds
// 171000000000 nanosecond

// 1/10000000000 10ths of nanosecond, 100 picoseconds
// 1/100000000000 100ths of nanosecond, 1000 picoseconds
// 1/1000000000000 picosecond

, // 1/1000000000000000 femtosecond

, // 1/1000000000000000000 attosecond

, // 1/1000000000000000000000 zeptosecond

, // 1/1000000000000000000000000 yoctosecond

, // 1/10tothed44th Planck time

more CLOCK _

VID_UNKNOWN =20,
VID_1000_12,
VID_1000_12_5,
VID_1000_15,
VID_1000_16,
VID_1000_18,
VID_1000_24,
VID_1000 25,
VID_1000_30,
VID_1000 32,
VID_1000_36,
VID_1000_48,
VID_1000_50,
VID_1000_60,
VID_1000_64,
VID_1000_72,
VID_1000_96,
VID_1000_100,
VID_1000_120,
VID_1000_128,
VID_1000_144,
VID_1000_192,
VID_1000_200,
VID_1000_240,
VID_1000_256,
VID_1000_288,
VID_1001_12 =62,
VID_1001_12_5,
VID_1001_15,
VID_1001_16,
VID_1001_18,
VID_1001_24,
VID_1001_25,
VID_1001_30,
VID_1001_32,
VID_1001_36,
VID_1001_48,
VID_1001_50,
VID_1001_60,
VID_1001_64,
VID_1001_72,

Page 26

VID_1001_96,
VID_1001_100,
VID_1001_120,
VID_1001_128,
VID_1001_144,
VID_1001_192,
VID_1001_200,
VID_1001_240,
VID_1001_256,
VID_1001_288,
AUD_UNKNOWN =103,
AUD_30720,
AUD_31968,
AUD_32000,
AUD_32032,
AUD_33333,
AUD_42336,
AUD_44055,
AUD_44100,
AUD_44144,
AUD_45937,
AUD_46080,
AUD_47952,
AUD_48000,
AUD_48048,
AUD_50000,
AUD_61440,
AUD_63936,
AUD_64000,
AUD_64064,
AUD_66666 ,
AUD_84672,
AUD_88111,
AUD_88200,
AUD_88288,
AUD_91875,
AUD_92160,
AUD_95904,
AUD_96000,
AUD_96096,
AUD_100000,
AUD_122880,
AUD_127872,
AUD_128000,
AUD_128128,
AUD_133333,
AUD_169344,
AUD_176223,
AUD_176400,
AUD_176576,
AUD_183750,
AUD_184320,
AUD_191808,
AUD_192000,
AUD_192192,
AUD_200000

} CBFRate_et;

Page 27

Annex B - CCFC Character Set

CCFC shall be encoded using the ASCII character set excluding control characters and white space.

Disallowed Characters

Character Dec Hex Name
control 0 (0Ox00) control
characters to to characters
31 (Ox1F)
space 32 (0x20) space
delete 127 (OX7F) DEL
128 or higher 128 (0Ox80) 128 or higher
to to
255 (OXFF)

Active Characters

abcdefghi jkImnopqgrstuvwxyz
ABCDEFGH I JKLMNOPQRSTUVWXYZ

0123456789
PH$HE " Q*+,-. /1 ;<=>?20[1"_" {1}~

Character Dec Hex Name
! 33 (0x21) Exclamation
" 34 (Ox22h) |Quote
35 (0x23) Number
$ 36 (0x24) |Dollar
% 37 (0x25) Percent
& 38 (Ox26) |Ampersand
' 39 (0x27) |Apostrophe
(40 (Ox28) |Open Parenthesis
) 41 (0x29) Close Parenthesis
* 42 (Ox2A) |Asterisk
+ 43 (Ox2B) |Plus
, 44 (0x2C) |Comma
- 45 (Ox2D) |Hyphen
. 46 (Ox2E) |Period
/ 47 (Ox2F) Forward Slash
0 48 (0x30)
1 49 (0x31)
2 50 (0x32)
3 51 (0x33)
4 52 (0x34)
5 53 (0x35)
6 54 (0x36)
7 55 (0x37)
8 56 (0x38)
9 57 (0x39)
: 58 (Ox3A) |Colon
; 59 (0x3B) |Semicolon
< 60 (Ox3C) |Lessthan
= 61 (0Ox3D) |Equal
> 62 (Ox3E) |Greater than

Page 28

? 63 (Ox3F) |Question

@ 64 (0x40) |at symbol

A 65 (0x41)

B 66 (0x42)

C 67 (0x43)

D 68 (0x44)

E 69 (0x45)

F 70 (0x46)

G 71 (0x47)

H 72 (0x48)

I 73 (0x49)

J 74 (0x4A)

K 75 (0x4B)

L 76 (0x4C)

M 77 (0x4D)

N 78 (0x4E)

O 79 (0x4F)

P 80 (0x50)

Q 81 (0x51)

R 82 (0x52)

S 83 (0x53)

T 84 (0x54)

U 85 (0x55)

\Y 86 (0x56)

w 87 (0x57)

X 88 (0x58)

Y 89 (0x59)

Z 90 (0x5A)

[91 (Ox5B) |Open Bracket

\ 92 (Ox5C) |Back Slash

] 93 (Ox5D) |Close Bracket

A 94 (Ox5E) |Caret
95 (Ox5F) Underscore
96 (0x60) Grave Accent

a 97 (0x61)

b 98 (0x62)

c 99 (0x63)

d 100 (0x64)

e 101 (0x65)

f 102 (0x66)

g 103 (0x67)

h 104 (0x68)

i 105 (0x69)

i 106 (0x6A)

k 107 (0x6B)

I 108 (0x6C)

m 109 (0x6D)

n 110[(Ox6E)

0 111] (Ox6F)

Page 29

p 112 (0x70)

q 113] (0x71)

r 114 (0x72)

s 115 (0x73)

t 116 (0x74)

u 117] (0x75)

v 118 (0x76)

w 119 (0x77)

X 120 (0x78)

y 121] (0x79)

z 122| (0x7A)

{ 123 (0x7B) |Open Brace
| 124 (0x7C) |Vertical Bar
} 125] (0x7D) |Close Brace
~ 126| (Ox7E) [Tilde

Page 30

Annex C - CCFC Example lllustrations

Time point < 86400s in seconds Time point < 86400s in milliseconds

TO1:00:00X TO1:00:00m999X
lhh mm Ss ‘hh mm ss|ddd
Time Time milliseconds
Interval < 86400s in seconds Interval < 86400s in microseconds
100:-:10:00X 100:10:00u999999X
hh mm ss hh mm ss|dddddd
Interval Interval microseconds

Time point >= 86400s in seconds Time point >= 86400s in nanoseconds

E1T12:13:14X E123T01:10:02n999999999X
D|hh mm ss ‘DDD|hh mm Ss | ddddddddd
Time Time
Event Event nanoseconds
Interval >= 86400s in seconds Interval >= 86400s in picoseconds
P2T22:23:24X P12T01:10:02p999999999999X
D|hh mm ss ‘DD|hh mm ss‘dddddddddddd
Time . Time .
Period Period picoseconds

2015 Leap-second in New York with TOD_LEAPSECOND_UTC_UTC Count Mode
D2015-06-30T19:59:60U-04Zamerica/new_yorkv2021aMuX
|YYYY—MM—DD |hh mm Ss lihh |

term
Date Time UTC Offset Tz Database version UTC_UTC

Time Zone Tz pData version year TOD mode
Tz Data version letter

Page 31

Annex D - Example Listing from CCT Reference Implementation

CCT Version 3.0.0.0 2025-01-20 00:00:00

Time flies when you"re having fun!

File out: ..\OutputFiles\CCTOut_BB_TESTSELECTEDCCTCCONFIGURATIONSANDSHOWCBFCVALUES.txt

———————— Common Calendar Conventional Character Format (CCFC)

Date Time UTC Offset

| | | Zone (TzDb time zone identity)

| | | | Version (Tz Database release)
Mode (TOD count mode)

| X terminator
D2015-06-30T19:59:60U-04Zamer ica/new_yorkVv2024aMuX

-- Interval ((Dnterval) < 86400s --
123:59:59.999X
m_CCTDateTime_st:

m_eDecFracRate:4 CLOCK_3
m_blLocalDateExt:1 false
m_blsinterval:1 true
m_bSecslsNegative:1l false
m_unSecsHighl6 0000000000
m_ulSecsLow32 0000086399
Seconds 86399
m_CCTCDecimalFrac32_st::

m_IDecimalFrac32 00000999

CBF binary interchange bytes as hexadecimal
24 00 00 00 7f 51 01 00 -e7 03 00 00 size 12

-- Interval ((P)eriod) >= 86400s --
P1100:00:00.000X
m_CCTDateTime_st:

m_eDecFracRate:4 CLOCK_3
m_blLocalDateExt:1 false
m_blslInterval:1 true
m_bSecslsNegative:1 false
m_unSecsHighl6 0000000000
m_ulSecsLow32 0000086400
Seconds 86400
m_CCTCDecimalFrac32_st::

m_IDecimalFrac32 00000000

CBF binary interchange bytes as hexadecimal
24 00 00 00 -80 51 01 00 00 00 00 OO0 size 12

-- Time point ((T)ime) < 86400s --
T23:59:59.999999999X
m_CCTDateTime_st:

m_eDecFracRate:4
m_blLocalDateExt:1
m_blslInterval:1

m_bSecslsNegative:1l

m_unSecsHighl6
m_ulSecsLow32
Seconds

CLOCK_3

false

false

false

0000000000

0000086399
86399

Page 32

m_CCTCDecimalFrac32_st::
m_IDecimalFrac32 999999999
CBF binary interchange bytes as hexadecimal
04 00 00 00 7f 51 01 00 -fF -c9 -9a 3b size 12

-- Time point ((E)vent) >= 86400s --
E1T00:00:00.000X
m_CCTDateTime_st:

m_eDecFracRate:4 CLOCK_3
m_bLocalDateExt:1 false
m_blsInterval:1 false
m_bSecslsNegative:1 false
m_unSecsHighl16 0000000000
m_ulSecsLow32 0000086400
Seconds 86400
m_CCTCDecimalFrac32_st::

m_IDecimalFrac32 00000000

CBF binary interchange bytes as hexadecimal
04 00 00 OO0 -80 51 01 00 00 00 00 OO0 size 12

-- Second preceding 1972 leap-second in UTC time zone --
D1972-06-30T23:59:59U+00Zetc/utcV2024aMgX
m_CCTDateTime_st:

m_eDecFracRate:4 CLOCK_O
m_bLocalDateExt:1 true
m_blsInterval:1 false
m_bSecslsNegative:1l false
m_unSecsHigh16 0000000000
m_ulSecsLow32 0078796799
Seconds 78796799

m_CCTCLocalDate_st::
CCTCZonelD_st::

m_unZoneldx:10 [125] Etc/UTC
m_unTzDbRelsYear:12 52
m_unTzDbRelsLetter:5 0
m_ICurUTCOffset 000000
m_eTodCntMode:3 TOD_24HOUR_DAY

CBF binary interchange bytes as hexadecimal
11 00 00 00 -ff 57 -b2 04 7d 00 34 00 00 00 00 00 05 size 17

-- 1972 leap-second in UTC time zone --
D1972-07-01T00:00:00U+00Zetc/utcV2024aMgX
m_CCTDateTime_st:

m_eDecFracRate:4 CLOCK_O
m_bLocalDateExt:1 true
m_blsinterval:1 false
m_bSecslsNegative:1 false
m_unSecsHighl6 0000000000
m_ulSecsLow32 0078796801
Seconds 78796801

m_CCTCLocalDate_st::
CCTCZonelD_st::

m_unZoneldx:10 [125] Etc/UTC
m_unTzDbRelsYear:12 52
m_unTzDbRelsLetter:5 0
m_ICurUTCOffset 000000
m_eTodCntMode:3 TOD_24HOUR_DAY

CBF binary interchange bytes as hexadecimal
11 00 00 00 01 58 -b2 04 7d 00 34 00 00 OO0 00 OO0 05 size 17

-- Second following 1972 leap-second in UTC time zone --
D1972-07-01T00:00:00U+00Zetc/utcV2024amMgX
m_CCTDateTime_st:

m_eDecFracRate:4 CLOCK_O
m_bLocalDateExt:1 true
m_blsinterval:1 false
m_bSecslsNegative:1l false

Page 33

m_unSecsHighl6 0000000000

m_ulSecsLow32 0078796801

Seconds 78796801
m_CCTCLocalDate_st::

CCTCZonelD_st::

m_unZoneldx:10 [125] Etc/UTC
m_unTzDbRelsYear:12 52
m_unTzDbRelsLetter:5 0
m_ICurUTCOffset 000000
m_eTodCntMode:3 TOD_24HOUR_DAY

CBF binary interchange bytes as hexadecimal
11 00 00 00 01 58 -b2 04 7d 00 34 00 00 OO0 00 OO0 05 size 17

-- Second preceding 1972 leap-second in New York time zone --
D1972-06-30T23:19:59U-04Zamerica/new_yorkVvV2024aMgX
m_CCTDateTime_st:

m_eDecFracRate:4 CLOCK_O
m_bLocalDateExt:1 true
m_blsinterval:1 false
m_bSecslsNegative:1l false
m_unSecsHighl6 0000000000
m_ulSecsLow32 0078808800
Seconds 78808800

m_CCTCLocalDate_st::
CCTCZonelD_st::

m_unZoneldx:10 [230] America/New_York
m_unTzDbRelsYear:12 52
m_unTzDbRelsLetter:5 0

m_ICurUTCOffset -14400

m_eTodCntMode:3 TOD_24HOUR_DAY

CBF binary interchange bytes as hexadecimal
11 00 00 00 -e0 -86 -b2 04 -e6 00 34 00 -cO -c7 1f 00 05 size 17

-- 1972 leap-second in New York time zone --
D1972-06-30T19:59:59U-04Zamerica/new_yorkVv2024aMgX
m_CCTDateTime_st:

m_eDecFracRate:4 CLOCK_O
m_blLocalDateExt:1 true
m_blsinterval:1 false
m_bSecslsNegative:1 false
m_unSecsHighl6 0000000000
m_ulSecsLow32 0078796800
Seconds 78796800

m_CCTCLocalDate_st::
CCTCZonelD_st::

m_unZoneldx:10 [230] America/New_York
m_unTzDbRelsYear:12 52
m_unTzDbRelsLetter:5 0

m_ICurUTCOffset -14400

m_eTodCntMode:3 TOD_24HOUR_DAY

CBF binary interchange bytes as hexadecimal
11 00 00 00 00 58 -b2 04 -e6 00 34 00 -cO -c7 1f 00 05 size 17

-- Second following 1972 leap-second in New York time zone --
D1972-07-01T00:00:00U-04Zamerica/new_yorkVv2024aMgX
m_CCTDateTime_st:

m_eDecFracRate:4 CLOCK_O
m_bLocalDateExt:1 true
m_blsinterval:1 false
m_bSecslsNegative:1l false
m_unSecsHighl6 0000000000
m_ulSecsLow32 0078811201
Seconds 78811201

m_CCTCLocalDate_st::
CCTCZonelD_st::
m_unZoneldx:10 [230] America/New_York
m_unTzDbRelsYear:12 52

Page 34

m_unTzDbRelsLetter:5 0
m_ICurUTCOffset -14400
m_eTodCntMode:3 TOD_24HOUR_DAY
CBF binary interchange bytes as hexadecimal
11 00 00 00 41 -90 -b2 04 -e6 00 34 00 -cO -c7 1f 00 05 size 17

-- Nanosecond preceding 2016 DST Onset in New York time zone --
D2016-03-13T01:59:59.999999999U-05Zamer ica/new_yorkV2024aMgX
m_CCTDateTime_st:

m_eDecFracRate:4 CLOCK_9
m_bLocalDateExt:1 true
m_blsinterval:1 false
m_bSecslsNegative:1 false
m_unSecsHighl16 0000000000
m_ulSecsLow32 1457852425
Seconds 1457852425
m_CCTCDecimalFrac32_st::
m_IDecimalFrac32 999999999

m_CCTCLocalDate_st::
CCTCZonelD_st::

m_unZoneldx:10 [230] America/New_York
m_unTzDbRelsYear:12 52
m_unTzDbRelsLetter:5 0

m_ICurUTCOffset -18000

m_eTodCntMode:3 TOD_24HOUR_DAY

CBF binary interchange bytes as hexadecimal
la 00 00 00 09 10 -e5 56 -ff -c9 -9a 3b -e6 00 34 00 -b0 -b9 1f 00 05

-- Nanosecond at 2016 DST Onset in New York time zone --
D2016-03-13T03:00:00.000000000U-04Zamerica/new_yorkVvV2024aMgX
m_CCTDateTime_st:

m_eDecFracRate:4 CLOCK_9
m_bLocalDateExt:1 true
m_blsInterval:1 false
m_bSecslsNegative:1 false
m_unSecsHighl16 0000000000
m_ulSecsLow32 1457852426
Seconds 1457852426
m_CCTCDecimalFrac32_st::

m_IDecimalFrac32 00000000

m_CCTCLocalDate_st::
CCTCZonelD_st::

m_unZoneldx:10 [230] America/New_York
m_unTzDbRelsYear:12 52
m_unTzDbRelsLetter:5 0

m_ICurUTCOffset -14400

m_eTodCntMode:3 TOD_24HOUR_DAY

CBF binary interchange bytes as hexadecimal

size 21

la 00 00 00 Oa 10 -e5 56 00 00 00 00 -e6 00 34 00 -cO -c7 1f 00 05 size 21

-- Nanosecond following 2016 DST Onset in New York time zone --
D2016-03-13T03:00:00.000000001U-04Zamerica/new_yorkVv2024aMgX
m_CCTDateTime_st:

m_eDecFracRate:4 CLOCK_9
m_bLocalDateExt:1 true
m_blsInterval:1 false
m_bSecslsNegative:1 false
m_unSecsHighl16 0000000000
m_ulSecsLow32 1457852426
Seconds 1457852426
m_CCTCDecimalFrac32_st::

m_IDecimalFrac32 00000001

m_CCTCLocalDate_st::
CCTCZonelD_st::

m_unZoneldx:10 [230] America/New_York
m_unTzDbRelsYear:12 52
m_unTzDbRelsLetter:5 0

Page 35

m_ICurUTCOffset -14400
m_eTodCntMode:3 TOD_24HOUR_DAY
CBF binary interchange bytes as hexadecimal
1la 00 00 00 Oa 10 -e5 56 01 00 00 00 -e6 00 34 00 -cO -c7 1f 00 05 size 21

Your time is up.

Page 36

	1 Introduction
	2 Scope
	3 Normative References
	4 Common Calendar Conventional Binary Format (CBFC)
	4.1 CBFC Components
	4.1.1 Date Time
	4.1.2 Decimal Fraction Rate
	4.1.3 Decimal Fractions of Seconds
	4.1.4 Local Date
	4.1.4.1 Time Zone Identity
	4.1.4.2 Current UTC Offset
	4.1.4.3 Time-of-Day Count Mode

	4.2 CBFC Construction
	4.2.1 Time-point
	4.2.1.1 UTC accurate local date and time-of-day
	4.2.1.2 UTC accurate local date with arbitrary time-of-day
	4.2.1.3 Time-point less than 24 hours
	4.2.1.4 Time-point 24 hours or greater (Event)

	4.2.2 Interval
	4.2.2.1 Interval less than 24 hours
	4.2.2.2 Interval 24 hours or greater (Period)

	4.3 Geostamp
	4.3.1 Geographic Coordinates

	4.4 Assembly Order
	4.5 RIFF Wrapper

	5 Common Calendar Conventional Character Format (CCFC)
	5.1 ISO 8601 Variation
	5.2 Character Set
	5.3 Hard Terminator
	5.4 Data Field Elements
	5.4.1 Time Element
	5.4.1.1 UTC accurate local date and time-of-day
	5.4.1.2 UTC accurate local date and time having no relation to date
	5.4.1.3 Time point less than 86400s
	5.4.1.4 Time point equal or greater than 86400s
	5.4.1.5 Interval less than 86400s
	5.4.1.6 Interval equal or greater than 86400s

	5.5 Event Element
	5.6 Period Element
	5.7 Date Element
	5.8 UTC Offset Element
	5.9 Time Zone Element
	5.10 IANA Time Zone Database Version Element
	5.11 TOD Count Mode Element
	5.12 Assembly and Order
	5.12.1 UTC accurate local date and time-of-day
	5.12.2 UTC accurate local date and time with no relation to the date

	5.13 Time point less than 86400s
	5.14 Time point equal or greater than 86400s
	5.15 Interval less than 86400s
	5.15.1 Interval equal or greater than 86400s

	5.16 Geostamp
	5.16.1 Location Element

	6 Common Calendar Conventional API
	Annex A - CCT Standard Rates
	Annex B - CCFC Character Set
	Annex C - CCFC Example Illustrations
	Annex D - Example Listing from CCT Reference Implementation

