
Page 1

Common Calendar Reference Implementation Guide
CCTMetaGen and CCT Clients

Brooks Harris Version 3 2024-04-30 The author dedicates this work to the public domain

The Common Calendar specification is available at:
common-calendar.org

Table of Contents

1 Introduction ... 1

2 Incorporation of Tz Database and glibc .. 3
2.1 Tz Database ... 3
2.2 Posix Time and glibc .. 3

2.2.1 Enhanced struct tm ... 3

3 CCTMetaGen Metadata Generator... 4
3.1 External Information ... 4

3.1.1 IERS Leap-seconds ... 4
3.1.2 IANA Time Zone Database Time Zones and Rules .. 4

3.1.2.1 Time Zone Indexing ... 5
3.1.3 Windows CLDR Time Zones .. 5

3.2 Time Zone Transitions .. 5
3.3 UTC Offset Shift ... 5
3.4 Location .. 5
3.5 Compressed RIFF for Distribution and Embedding .. 5

4 CCT Clients .. 6
4.1 CCT Client Writer ... 6

4.1.1 CCT Binary Format (CBF) .. 7
4.1.2 CBF RIFF Wrapper .. 8
4.1.3 CCT Character Format (CCF) .. 8

4.2 CCT Client Reader ... 8
4.2.1 Read CBF Binary Format ... 9
4.2.2 Read CCF Character Format ... 9

5 CCTDemo ... 9
5.1 Construction and Initialization .. 9

5.1.1 CCct Instantiation ... 10
5.2 CCTDemoConsole - Tests and Demos .. 10

6 CCT Build ... Error! Bookmark not defined.
6.1 CCTMetaGenConsole .. Error! Bookmark not defined.
6.2 CCTDemoConsole ... Error! Bookmark not defined.

Notation
“YMDhms” is shorthand for year-month-day hour:minute:second representation.

ISO 8601 representation is supplemented with suffixes (UTC) and (TAI), for example 1970-01-01 00:00:10 (TAI) = 1970-01-
01T00:00:00 (UTC).

“UTC1970” is shorthand for 1970-01-01T00:00:00 (UTC).

1 Introduction

The set of Common Calendar specifications describe the data types formats and APIs that make up the
Common Calendar Timestamp system. This document describes the c/c++ reference implementation.

There are two major parts of the CCT implementation; CCTMetaGen and CCTDemo.

CCTMetaGen obtains external leap-seconds, Tz Database time zones and rules, location and country
codes, and Windows time zones and consolidates them into a compact format for distribution to CCT
client applications.

CCTDemo is a CCT client demonstrating use of the CCT APIs including incorporation of the metadata
created by CCTMetaGen, instantiation of CCT timestamp objects, and exercising the CCT APIs including
generating completed timestamps. CCTDemo implements both a CCT Client Writer and a CCT Client
Reader.

https://common-calendar.org/

Page 2

CCT MetaGen

CCT Client Writer

CCT Client Reader

Leap-seconds Time Zone Database

Leap-seconds Table

TzIf Time Zone File Set

“Right” with leap-seconds

Windows Time Zones

Compressed RIFF

Time Zone Index List

Time Zone Transition List

C-code Array

Compressed RIFF

Metadata file

Embedded Metadata

CCT Binary Timestamp (CBF)

CCT Character Timestamp (CCF)

Windows Time Zone List

Select time zone

System time (clock)

Get time from platform

Apply metadata

Set time

Apply metadata

Reconstruct Transitions set

Populate internal Binary structs

Assemble CCT Binary format

Generate CCT Character format

Populate internal Binary structs

Parse CCT Character format

Read CCT Binary format

UTC time

Tzdb Time Zone

Windows Time Zone

Character Display

CBF RIFF Wrapper

 CBF

CBF

CBF

Location

Location

Compressed RIFF

Embedded Metadata Array

Page 3

2 Incorporation of Tz Database and glibc

The CCT implementation incorporates adapted versions of Tz Database c-code for functionality provided
by zic.c and zdump.c, and relevant portions of glibc c-code. This is done for several reasons.

• To include all the relevant code in a single library to avoid any dependence on operating system
services or installed library versions on the platform.

• To provide a timekeeping system that functions completely independent of the operating system.

• To allow the c/c++ optimizers to operate across the libraries and applications.

• To include critical additions to Tz Database and glibc to support the objectives of the CCT system and
formats. In particular the addition of an STDOFF member variable to standard version of struct tm.

This results in an enhanced implementation of Posix time, glibc and TzDb that is completely independent
of the operating system.

2.1 Tz Database

IANA Time Zone Database distributes the time zone data sources and associated c-code.

Time Zone Database
https://www.iana.org/time-zones

The TzDb zic.c and zdump.c programs are important. They are really the reference implementations of
how TzDb should operate and it is challenging to replicate their behavior in all details. CCT has adapted
them directly to retain their timekeeping characteristics.

It is difficult to use zic.c and zdump.c in Windows builds, in particular to avoid conflicts with Windows
c/c++ header files. To avoid this the source code has been ported to compile directly on Windows c/c++
using MSVC.

The Tz Database code, both zic.c and zdump.c, are employed in both CCTMetaGen to assemble rule
sets for distribution, and in clients to reconstruct the full transition set for the selected time zone.

2.2 Posix Time and glibc

The TzDb code relies on the target platform's implementation of Posix time as implemented in relevant
portions of glibc.

GNU C Library master sources
https://sourceware.org/git/?p=glibc.git;a=summary

To support the independence of the CCT code from the platform the CCT implementation includes these
portions of glibc compiled into the CCT libraries. This avoids conflicts with the platform's Posix time.

It also enables the modification of a critical component of Posix time, the declaration and use of struct

tm.

2.2.1 Enhanced struct tm

The normal version of Posix time's struct tm has insufficient information to accomplish the objectives

of CCT. In particular it lacks a member variable for STDOFF. This data is required to distinguish GMTOFF
from STDOFF and propagate the STDOFF values through the CCTMetaGen processes and to the client.

CCT has renamed struct tm to struct tztm and added a member, long int tm_stdoff.

struct tztm

{

 int tm_sec; /* Seconds. [0-60] (1 leap second) */

 int tm_min; /* Minutes. [0-59] */

 int tm_hour; /* Hours. [0-23] */

 int tm_mday; /* Day. [1-31] */

 int tm_mon; /* Month. [0-11] */

 int tm_year; /* Year - 1900. */

 int tm_wday; /* Day of week. [0-6] */

 int tm_yday; /* Days in year.[0-365] */

 int tm_isdst; /* DST. [-1/0/1]*/

Page 4

 long int tm_gmtoff; /* Seconds east of UTC. */

 const char *tm_zone; /* Timezone abbreviation. */

 long int tm_stdoff; // CCT addition

};

This modification does not alter the behavior of Posix time calls like localtime() but it allows the CCT
implementations to properly account for STDOFF shifts together with GMTOFF adjustments.

3 CCTMetaGen Metadata Generator

CCTMetaGen is the central application that generates the metadata for CCT clients. It is analogous to
TzDb zic.c; it parses the TzDb source files together with leap-seconds and Windows time zones and
generates a binary form of the metadata for use by clients.

CCTMetaGen obtains external information and generates metadata for use by a CCT Client.

CCT MetaGen

Leap-seconds Time Zone Database

Leap-seconds Table

TzIf Time Zone File Set

“Right” with leap-seconds

Windows Time Zones

Compressed RIFF

Time Zone Index List

Time Zone Transition List

C-code Array

Compressed RIFF

Metadata file

Windows Time Zone List

Location

Location

Compressed RIFF

Embedded Array

CCTMetaGen needs paths to the metadata files and paths to several output file locations.
class CCctPaths::ConstructPaths() provides methods for managing the required directories and file
names.

3.1 External Information

CCTMetaGen must first acquire external information from several sources; leap-seconds, Tz Database
time zones, default time zone locations, and Windows time zones.

The CCTMetaGen needs paths to external metadata and direct output. Class CCctPaths is provided to
construct appropriate paths. See CCctPaths::ConstructPaths().

3.1.1 IERS Leap-seconds

CCTMetagen obtains leap-second information directly from:

IERS Leap_Second_History.dat
https://hpiers.obspm.fr/eoppc/bul/bulc/Leap_Second_History.dat

CCTMetagen parses and processes the Leap_Second_History.dat file through the Common Calendar
TAI-UTC API. This populates a double-linked list with struct DateTaiUtc_st data in class CTaiUtcTable.

See Common Calendar TAI-UTC API.

3.1.2 IANA Time Zone Database Time Zones and Rules

CCTMetagen obtains time zone information from:

IANA Time Zone Database (tzbd)
https://www.iana.org/time-zones

Page 5

CCTMetagen parses and processes all the TzDb source files through Common Calendar Time Zone
Database API, including etcetera, backzone, and zone.tab for default time zone location and country
code. TzDb processing is “vanguard” (supporting negative DST) and “Right” (with leap-seconds).

This employs TzDb zic.c and zdump.c code directly to parse the TzDb source files and generate
transitions. This populates a set of double-linked lists of transitions CTzTransList.

3.1.2.1 Time Zone Indexing

CCT uses an indexing procedure to provide a compact representation of TzDb time zone identifiers.

The TzDb time zone identifiers, such as "America/New_York", are indexed to provide a compact time
zone identifier suited for the CCT binary format and to provide convenient time zone selection methods
within CCT clients. When CCTMetaGen has parsed all the TzDb source files it iterates through the time
zones in order they appear in the source files and simply assigns an incrementing index integer to each.

This is implemented in CTzDataParse::AssignInitialFixedZoneIndices(); and produces a list,
CTZDZoneNameIdxList, of TzDb time zone names and their assigned indexes in data type struct
ZoneNameAndIdx_st;

3.1.3 Windows CLDR Time Zones

CCTMetaGen obtains Windows time zone information from:

Unicode CLDR Windows time zones
https://github.com/unicode-rg/cldr/blob/main/common/supplemental/windowsZones.xml

Windows time zones are obtained from the Unicode Windows CLDR, indexed, and mapped to the TzDb
time zones. CTzDataParse::MergeWinZonesWithCTZDZones().

3.2 Time Zone Transitions

CCTMeteGen runs zic internally to create the full set of transitions for each time zone. This generates a
set of arrays in native zic form internally in memory as output by zic outzone(). A full TzIF file set is also
generated by calling zic writezone(); These are “Right” (with leap-seconds).

The TzDb transitions of each time zone are converted to a double-linked list, class CTzTransList, with
data type struct TZDTrans_st. This list is filtered to retain only the primary rule set as a double-linked list,
with data type struct TZDTransTr_st, This represents the minimal information required to reduce transfer
size.

3.3 UTC Offset Shift

Many time zones have shifted their UTC-offset independent of DST shifts. Tz Database calls this
"STDOFF" for "standard time offset". When this occurs CBFUtcShift_st provides metadata to represent
these UTC-offset shifts.

The presence of a CBFUtcShift_st is flagged by CBFLocalDate_st::m_bUtcShiftExt:1

See Common Calendar Binary Format, UTC Offset Shift - CBFUtcShift_st

3.4 Location

The Common Calendar Timestamp (CCT) specification has been extended to include geographic
coordinates to create a Geostamp.

See Common Calendar Geostamp.

3.5 Compressed RIFF for Distribution and Embedding

CCTMetaGen has assembled lists containing the required metadata for CCT Client operations.

• CTaiUtcTable - Leap-seconds

• CTzTransList - Tz Database transitions

• CTZDZoneNameIdxList - time zone indexes

• CWinZones - Windows time zones

• CBFLocation_st - country codes and default geographic coordinates

Page 6

This set of lists are reformatted into a RIFF (four cc) container for distribution to CCT clients. The RIFF is
zipped (zlib.c), resulting in a compressed binary representation of all needed metadata. This results in a
file size about 150kb. (This compares to the TzDb tzdata tarball of about 430kb.)

The byte values of the compressed RIFF are processed through class
CMetaEmbedder::GenEmbedderCode() to generate a c-code file, CCTMetaEmbedded.cpp in CCTLib2,
that declares and populates an array containing the compressed RIFF. This array may be embedded
(compiled and linked) in a CCT client application.

CCTMetaGen will also write the full set of native TzDb TzIF source files. This is useful for testing because
it allows native versions if TzDb zdump to generate transitions for comparison to the CCT timestamps, as
shown in some test routines in CCTDemo. It also potentially allows other systems to read the CCT
generated TzIF files, which include the complete set of time zones in "vanguard" and “right” (with leap-
seconds) form.

4 CCT Clients

CCT clients are the operational versions of Common Calendar for use by applications, operating systems,
anywhere unambiguous timestamps are needed.

The compressed metadata produced by CCTMetaGen can be embedded in client executables on build
by including CCTLib2. At runtime the client calls CRiff::MOpen() which calls a static function
find_embedded_file() to locate the compressed image and decompresses it to memory. Thus all the
metadata is available to the client application as needed.

Construction of, access to, and manipulation of the CCbf and CCcf classes and accompanying
functionality are provided by Common Calendar Timestamp API. See Common Calendar Timestamp API.
The methods are implemented in class CCct,

4.1 CCT Client Writer

A CCT writer must have access to all applicable metadata to fully populate the internal class CCbf
members. The metadata array code generated by CCTMetaGen, CCTMetaEmbedded.cpp, is compiled
and linked into the client at compile time.

CCT Client Writer

Embedded Metadata

CCT Binary Timestamp (CBF)

CCT Character Timestamp (CCF)

Select time zone

System time (clock)

Get time from platform

Apply metadata

Set time

Apply metadata

Reconstruct Transitions set

Populate internal Binary structs

Assemble CCT Binary format

Generate CCT Character format

CBF RIFF Wrapper

 CBF

CBF

CBF

Page 7

At runtime, on construction of CCct, this array is read and the recovered RIFF is decompressed to
memory. The CTaiUtcTable, CTzTransList, CTZDZoneNameIdxList, CWinZones, and CBFLocation_st
metadata are reconstructed.

When the user selects a time zone the CTzTransList is converted back to TzDb native form. Zic is run to
reconstruct the native TzDb metadata for that time zone, and zdump is run to generate all the TzDb
transitions. The TzDb transitions are converted to a fully populated CTzTransList of the time zone for use
by the client.

Windows time zones and CBFLocation_st data are connected to the selected time zone.

The user must supply the desired parameters to control the various options provided by CCT.

See CCct.h - CCTParams_st and CCct::m_CCTParams_st

4.1.1 CCT Binary Format (CBF)

A writer creates the CCT Binary Format (CBF).

class CCbf is populated by calling one of the "CCct::Set" methods.

CCct::SetSecsFrac()

If used, CBFLocation_st is populated with default location information.

An application can set the CCT location to an actual GPS location using:

int CCct::SetLocation(char* psLatitude, char* psLongitude, char* psAltitude)

See Common Calendar Geostamp.

The final operation is to assemble the completed binary CBF from the populated internal CCbf members.

CCct::AssembleCbf()

This results in the final result of the Common Calendar - the binary CBF timestamp itself.

This listing shows the CCF character format of a selected example, followed by the values of the internal
CCbf struct members, followed by a hex dump of the assembled CBF.

D2024-03-10T01:59:59m000U-05Zamerica/new_yorkAestV2021aL27S00t01a02cMuX

// UTC1970 1710054026.000 Day 19792

CCbf contents:

CBFTime_st::

 m_eRateEnumeration CLOCK_3

 m_bLocalDateExt TRUE

 m_b24HourPeriodExt FALSE

 m_bCounterSign positive

 m_eCounterSize COUNTERSIZE_35

 m_ulCounterLow32 7199000

CBFTime_st Counter 7199000

CBFLocalDate_st::

 m_l1970DayNumber 19792

 m_nLeapsecs 27

 m_TZDTimeZoneID_st.m_unZoneIdx idx[255] America/New_York

 m_TZDTimeZoneID_st.m_unTzDataReleaseYear 49

 m_TZDTimeZoneID_st.m_unTzDataReleaseLetter 0

 m_TZDTimeZoneID_st.m_bCBFLocationExt FALSE

 m_TZDTimeZoneID_st.m_bCBFAbbrExt TRUE

 m_TZDTimeZoneID_st.m_bCBFAbbrChangeExt FALSE

 m_lUTCOffset -18000

 m_eTODMode TOD_LEAPSECOND_UTC_UTC

 m_eDSTCountMode DSTCOUNTMODE_CONVENTIONAL

 m_bIsLeapSecondDay FALSE

 m_bIsLeapSecond FALSE

 m_bIsLeapSecondNegative FALSE

 m_bUtcShiftExt FALSE

 m_bDSTExt TRUE

 m_bDstTransDayExt TRUE

CBFAbbr::

Page 8

 est

CBFDst_st::

 m_eDSTBias 0

CBFDstTransDay_st::

 m_ulDSTTransTime 7200

 m_lDSTBiasChange 3600

CBF Total size 29 bytes 232 bits

Assemble binary CBF image from CCbf data

 04 01 18 -d9 6d 00 00 00 50 4d 00 00 -80 0d 00 -ff

 00 31 10 -b0 -b9 -d5 00 00 00 00 20 1c 10 0e 00 -e5

-f3 74

 size 34

4.1.2 CBF RIFF Wrapper

The binary CFB is the prime interchange item which may be used unadorned in many circumstances. In
some situations it may be convenient to encapsulate the CBF in a known wrapper format to isolate it from
some container or transport protocol or to concatenate a list of CBFs. CCT provides the CCT CBF RIFF
Wrapper for these purposes.

One or more CBFs may be wrapped in a CBF RIFF Wrapper using:

CCct::WriteCRiff_Ccbf()

See Common Calendar Binary Format, CBF RIFF Wrapper.

4.1.3 CCT Character Format (CCF)

The writer can also output the CCT Character Format (CCF). A CCF is constructed from the populated
CCbf data.

Construct a CCF string from the CCbf data

CCct::SetCcfFromCCbf()

Get the CCF string

CCct::GetCcfAscii(char* sCcf)

Example showing the CCF formed from the CCbf member values shown above in the 4.1.1 CCT Binary
Format (CBF) section.

D2020-03-08T01:59:59n000000000U-05Zamerica/new_yorkAestV2021aL27S00t01a02cMuX

See Common Calendar Character Format.

4.2 CCT Client Reader
The CCT framework is all in service for the Client Reader, allowing applications to read the timestamps
and derive the information required for their intended purpose.

• CCTMetaGen has generated metadata used by the Client Writer.

• The Client Writer has produced timestamps.

• The Client Reader can then read CBFs and CCFs and supply information to the application as
required.

CCT Readers may be constructed in two forms

Isolated and memory limited applications

CCT timestamps are designed to provide sufficient metadata to calculate time points and YMDhms
representation across the current day to support readers and applications that may have no access to
external information and insufficient memory to store all the metadata. A reader of this type can support
UTC time and local YMDhms for the current day; it cannot reliably address past and future dates.

Connected and with memory applications

Applications with connectivity and sufficient memory can implement a fully functional system that can
calculate past and future dates.

Page 9

Construction of, access to, and manipulation of the CCbf and CCcf classes and accompanying
functionality are provided by Common Calendar Timestamp API. The methods are implemented in class
CCct.

CCT Client Reader

CCT Binary Timestamp (CBF)

CCT Character Timestamp (CCF)

Populate internal Binary structs

Parse CCT Character format

Read CCT Binary format

UTC time

Tzdb Time Zone

Windows Time Zone

Character Display

CBF RIFF Wrapper

 CBF

CBF

CBF

4.2.1 Read CBF Binary Format

A CBF can be read to memory, parsed, and populates the set of internal CCbf classes:
CCct::ReadCbf()

One or more CBFs may reside in a CBF RIFF Wrapper and can be read and the individual CBFs
extracted:
CCct::ReadCRiff_Ccbf()

4.2.2 Read CCF Character Format

Read and parse a CCF string and populate the set of internal CCbf classes:
CCct::ParseCcfSetCCbf(char* sCcf)

Read the internal CCbf classes and generate the internal CCF string:
CCct::SetCcfFromCCbf()

Get the CCF string:
CCct::GetCcfAscii(char* sCcf)

Example:
D1972-06-30T19:59:60U-04Zamerica/new_yorkAedtV2021aL0*Ss+01cMuX

5 CCTDemoConsole

CCTDemoConsole is a console application that demonstrates CCT use. It includes both a CCT Client
Writer and a CCT Client Reader. It also includes access to the isolated TzDb and Posix time functions so
that testing can compare the CCT results to expected results from tzbd.

5.1 Construction and Initialization

CCTDemo shows how to construct and use class CCct, the user-level interface to CCT as documented in
Common Calendar Timestamp_API.

Instantiation of CCct is shown in CCTDemosConsole's main();

Page 10

A convenience helper, class Test_st Test_stX, is used to pass objects and parameters to the demo and
test routines. See CCTDemoTests.h.

The CCTDemo application needs paths to direct output listings. Class CCctPaths is provided to construct
appropriate paths. See CCctPaths::ConstructPaths().

A "test" CCct is instantiated and passed by Test_stX to many of the test and demo routines.

5.1.1 CCct Instantiation

Class CCct is the central object of the CCT client implements. The constructor performs many
initialization operations. The required metadata is contained in the embedded compressed RIFF array
produced by CCTMetaGen. On construction it is decompressed and parsed to populate the internal
metadata lists.

• CTaiUtcTable - Leap-seconds

• CTzTransList - Tz Database transitions

• CTZDZoneNameIdxList - time zone indexes

• CWinZones - Windows time zones

• CBFLocation_st - country codes and default geographic coordinates

5.2 CCTDemoConsole - Tests and Demos

Several demonstrations and tests are implemented in the CCTDemoConsole application.

The listing can be viewed at:

CCTDemoConsole Tests Listing Guide

https://common-calendar.org/CCT_Example_Output_Listing_Files/

